login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191627
a(n) = floor(3^n/(3n-1)).
5
1, 1, 3, 7, 17, 42, 109, 285, 757, 2036, 5535, 15184, 41955, 116657, 326111, 915887, 2582803, 7309820, 20754669, 59098040, 168715374, 482785532, 1384458512, 3977880795, 11449846073, 33011244523, 95319968562, 275624005481, 798027643777, 2313383506681
OFFSET
1,3
COMMENTS
Also equal to floor((3^n+1)/(3n-1)). [Proof: 3^n (mod 3n-1) is never zero; therefore 3^n -(3^n (mod 3n-1)) equals (1+3^n)-((1+3^n) mod (3n-1)), and removing the remainders in the numerator of either 1+3^n or 3^n results in the same number. The proof that 3^n <> 0 (mod 3n-1) follows from assuming that 3^n=k*(3n-1) for some integer k; reading this requirement mod 3 induces k=3*k', so 3^n=3*k'*(3n-1); reading this mod 9 induces k'=3*k'' etc. ad infinitum through all powers of 3, and forcing k->infinity.] - R. J. Mathar, Jun 20 2011
LINKS
MATHEMATICA
f[n_] := Floor[(3^n)/(3 n - 1)]
Table[f[n], {n, 1, 40}] (* A191627 *)
PROG
(PARI) a(n)=3^n\(3*n-1) \\ Charles R Greathouse IV, Jun 17 2011
(Maxima) A191627(n):=floor( 3^n/(3*n-1) )$ makelist(A191627(n), n, 1, 30); /* Martin Ettl, Oct 25 2012 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 09 2011
STATUS
approved