login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363142
Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(2*n-1))^(n+1).
9
1, 1, 3, 7, 17, 42, 107, 275, 715, 1884, 5009, 13421, 36224, 98382, 268657, 737244, 2032035, 5622938, 15615186, 43505382, 121570407, 340639265, 956861955, 2694064938, 7601455079, 21490621769, 60870280259, 172707869088, 490818655346, 1396973741672, 3981748142925
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 1 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(2*n-1))^(n+1).
(2) x = Sum_{n=-oo..+oo} (-1)^n * x^(2*n*(n-1)) / (1 + A(x)*x^(2*n+1))^(n-1).
(3) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^(2*n-1))^n.
(4) A(x) = x / Sum_{n=-oo..+oo} (-1)^n * x^(3*n) * (A(x) + x^(2*n-1))^(n-1).
(5) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(2*n^2) / (1 + A(x)*x^(2*n+1))^n.
a(n) = Sum_{k=0..floor(n/2)} A359670(n-k,n-2*k) for n >= 0. - Paul D. Hanna, May 18 2023
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 42*x^5 + 107*x^6 + 275*x^7 + 715*x^8 + 1884*x^9 + 5009*x^10 + 13421*x^11 + 36224*x^12 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(1 - sum(m=-#A, #A, (-1)^m * x^m * (Ser(A) + x^(2*m-1))^(m+1) ), #A-1)); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 17 2023
STATUS
approved