OFFSET
2,4
COMMENTS
To touch means: the path reaches the horizontal line with a down-step, or it is at the horizontal level and takes another horizontal step.
LINKS
Alois P. Heinz, Rows n = 2..150, flattened
FORMULA
Conjecture: T(n,n-2) = n-2.
Conjecture: T(n,n-3) = A000124(n-3).
Conjecture: T(n,n-4) = -11 + 19*n/3 - 3*n^2/2 + n^3/6.
From Alois P. Heinz, Nov 01 2021: (Start)
Sum_{k=1..n-1} k * T(n,k) = A005322(n).
T(2n,n) = A344502(n-1) for n >= 1. (End)
Conjecture: Riordan array (g(x)^2, x*g(x)), where g(x) = 1/(1 + x)*c(x/(1 + x)) and c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Feb 04 2024
EXAMPLE
The triangle starts:
1
1 1
2 2 1
4 4 3 1
9 9 7 4 1
21 21 17 11 5 1
51 51 42 29 16 6 1
127 127 106 76 46 22 7 1
323 323 272 200 128 69 29 8 1
835 835 708 530 352 204 99 37 9 1
2188 2188 1865 1415 965 587 311 137 46 10 1
5798 5798 4963 3805 2647 1667 937 457 184 56 11 1
...
T(n,n-1)=1 counts udhhhhh... staying on the horizontal line.
T(4,1)=2 counts uudd, uhhd.
T(4,2)=2 counts udud, uhdh.
T(4,3)=1 counts udhh.
T(5,1)=4 counts uudhd uuhdd uhudd uhhhd.
T(5,2)=4 counts uuddh uduhd uhdud uhhdh.
T(5,3)=3 counts ududh udhud uhdhh.
T(5,4)=1 counts udhhh.
MAPLE
b:= proc(x, y) option remember; expand(`if`(y>x or y<0, 0,
`if`(x=0, 1, add(b(x-1, y-j), j=-1..1))*`if`(y=0, z, 1)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=1..n-1))(b(n-1, 1)):
seq(T(n), n=2..14); # Alois P. Heinz, Nov 01 2021
MATHEMATICA
b[x_, y_] := b[x, y] = Expand[If[y > x || y < 0, 0,
If[x == 0, 1, Sum[b[x - 1, y - j], {j, -1, 1}]]*If[y == 0, z, 1]]];
T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, n-1}]][b[n-1, 1]];
Table[T[n], {n, 2, 14}] // Flatten (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Nov 01 2021
STATUS
approved