OFFSET
0,4
COMMENTS
Row sums are the Pell numbers A000129. Let A(x,y) be the g.f. of T and B(x,y) be the g.f. of T^-1; then B(x,y)=(A(-x^2*y,-1/x)-1)/(x*y) and A(x,y)=1+x*y*B(-1/y,-x*y^2).
FORMULA
G.f.: A(x, y) = (1-x+x*y)/(1-2*x-x^2*y^2). T(n, k) = 2*T(n-1, k) + T(n-2, k-2) (n>=k>=2) with T(0, 0)=T(1, 0)=T(1, 1)=1.
EXAMPLE
Rows of T begin:
1;
1,1;
2,2,1;
4,4,3,1;
8,8,8,4,1;
16,16,20,12,5,1;
32,32,48,32,18,6,1;
64,64,112,80,56,24,7,1;
128,128,256,192,160,80,32,8,1; ...
The matrix inverse T^-1 equals triangle A104041:
1;
-1,1;
0,-2,1;
0,2,-3,1;
0,0,4,-4,1;
0,0,-4,8,-5,1;
0,0,0,-8,12,-6,1;
0,0,0,8,-20,18,-7,1; ...
the columns of T^-1 equal rows of T in absolute value.
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, if(n==k, 1, if(n==k+1, n, -sum(j=1, (n+1)\2, (-1)^j*T(n-j+1, n-2*j+1)*T(n-j, k)))))
(PARI) T(n, k)=if(n<k || k<0, 0, if(n==k, 1, if(n==k+1, n, 2*T(n-1, k)+if(n>1 && k>1, T(n-2, k-2)))))
(PARI) T(n, k)=local(X=x+x*O(x^n), Y=y+y*O(y^k)); polcoeff(polcoeff((1-X+X*Y)/(1-2*X-X^2*Y^2), n, x), k, y)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 02 2005
STATUS
approved