login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106522
A Pascal type matrix based on the tribonacci numbers.
3
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 7, 8, 7, 4, 1, 13, 15, 15, 11, 5, 1, 24, 28, 30, 26, 16, 6, 1, 44, 52, 58, 56, 42, 22, 7, 1, 81, 96, 110, 114, 98, 64, 29, 8, 1, 149, 177, 206, 224, 212, 162, 93, 37, 9, 1, 274, 326, 383, 430, 436, 374, 255, 130, 46, 10, 1, 504, 600, 709, 813, 866, 810, 629, 385, 176, 56, 11, 1
OFFSET
0,4
COMMENTS
Row sums of A106522 mod 2 are A106524.
FORMULA
Riordan array (1/(1-x-x^2-x^3), x/(1-x)).
Number triangle T(n, 0) = A000073(n+2), T(n, k) = T(n-1, k-1) + T(n-1, k).
Sum_{k=0..n} T(n,k) = A001590(n+3).
Sum_{k=0..floor(n/2)} T(n-k, k) = A106523(n).
EXAMPLE
Triangle begins:
1;
1, 1;
2, 2, 1;
4, 4, 3, 1;
7, 8, 7, 4, 1;
13, 13, 15, 11, 5, 1;
MATHEMATICA
b[n_]:= b[n]= If[n<2, 0, If[n==2, 1, b[n-1] +b[n-2] +b[n-3]]]; (* A000073 *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, b[n+2], T[n-1, k-1] +T[n-1, k]]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 06 2021 *)
PROG
(Sage)
@CachedFunction
def b(n): return 0 if (n<2) else 1 if (n==2) else b(n-1) +b(n-2) +b(n-3)
def T(n, k):
if (k<0 or k>n): return 0
elif (k==0): return b(n+2)
else: return T(n-1, k) + T(n-1, k-1)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 06 2021
CROSSREFS
Cf. A000073, A001590 (row sums), A106523 (diagonal sums).
Sequence in context: A107356 A329854 A124725 * A128175 A104040 A338131
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 06 2005
STATUS
approved