OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,3,1,0,-1).
FORMULA
G.f.: (1+x)/((1+x-x^2)*(1-x-x^2-x^3)).
a(n) = 3*a(n-2) + a(n-3) - a(n-5).
a(n) = Sum_{k=0..floor(n/2)} A106522(n-k, k)
a(n) = (1/11)*( 10*T(n+2) + 5*T(n+1) + 3*T(n) + (-1)^n*( F(n+1) + 3*F(n) ) ), where T(n) = A000073, and F(n) = A000045. - G. C. Greubel, Aug 10 2021
MATHEMATICA
T[n_]:= T[n]= If[n<2, 0, If[n==2, 1, T[n-1] + T[n-2] + T[n-3]]]; (* A000073 *)
a[n_]:= (1/11)*((-1)^n*(Fibonacci[n+2] +2*Fibonacci[n]) +10*T[n+2] +5*T[n+1] + 3*T[n]);
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Aug 10 2021 *)
PROG
(Magma) I:=[1, 1, 3, 4, 10]; [n le 5 select I[n] else 3*Self(n-2) + Self(n-3) -Self(n-5): n in [1..41]]; // G. C. Greubel, Aug 10 2021
(Sage)
@CachedFunction
def T(n):
if (n<2): return 0
elif (n==2): return 2
else: return T(n-1) + T(n-2) + T(n-3)
def a(n): return (1/11)*((-1)^n*(fibonacci(n+2) +2*fibonacci(n)) +10*T(n+2) +5*T(n+1) + 3*T(n))
[a(n) for n in (0..40)] # G. C. Greubel, Aug 10 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 06 2005
STATUS
approved