



1, 2, 1, 2, 3, 6, 1, 2, 3, 6, 3, 6, 7, 14, 1, 2, 3, 6, 3, 6, 7, 14, 3, 6, 7, 14, 7, 14, 15, 30, 1, 2, 3, 6, 3, 6, 7, 14, 3, 6, 7, 14, 7, 14, 15, 30, 3, 6, 7, 14, 7, 14, 15, 30, 7, 14, 15, 30, 15, 30, 31, 62, 1, 2, 3, 6, 3, 6, 7, 14, 3, 6, 7, 14, 7, 14, 15, 30, 3, 6, 7, 14, 7, 14, 15, 30, 7, 14, 15
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Row sums of number the number triangle (A106522 mod 2).


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000


FORMULA

a(n) = (Sum_{k=0..n+2} binomial(n+2, k)) mod 2  (3  (1)^n)/2.
a(n) = ( (Sum_{k=0..(n/2+1)} binomial(n/2+1, k)) mod 2  1 )*(1 + (1)^n)/2 + ( (Sum_{k=0..(n+1)/2} binomial((n+1)/2, k)) mod 2  1)*(1  (1)^n)/2.
a(n) = A001316(n+2)  A000034(n).


MATHEMATICA

a[n_]:= (2^DigitCount[Floor[(n+2)/2], 2, 1]  1)*(3  (1)^n)/2;
Table[a[n], {n, 0, 100}] (* G. C. Greubel, Aug 11 2021 *)


PROG

(Magma)
A106524:= func< n  2^Multiplicity(Intseq(n+2, 2), 1)  2^(n mod 2) >;
[A106524(n): n in [0..100]]; // G. C. Greubel, Aug 12 2021
(Sage)
def A000120(n): return sum(n.digits(2))
def A106524(n): return 2^A000120(n+2)  2^(n%2)
[A106524(n) for n in (0..100)] # G. C. Greubel, Aug 11 2021
(PARI) a(n) = bitneg(n%2, hammingweight(n+2)); \\ Kevin Ryde, Aug 25 2021


CROSSREFS

Cf. A000034, A001316, A038573, A106522.
Sequence in context: A070861 A277566 A261144 * A323641 A086582 A033639
Adjacent sequences: A106521 A106522 A106523 * A106525 A106526 A106527


KEYWORD

easy,nonn


AUTHOR

Paul Barry, May 06 2005


STATUS

approved



