login
A106525
Values of x in x^2 - 49 = 2*y^2.
6
9, 11, 21, 43, 57, 119, 249, 331, 693, 1451, 1929, 4039, 8457, 11243, 23541, 49291, 65529, 137207, 287289, 381931, 799701, 1674443, 2226057, 4660999, 9759369, 12974411, 27166293, 56881771, 75620409, 158336759, 331531257, 440748043
OFFSET
1,1
COMMENTS
From Wolfdieter Lang, Sep 27 2016: (Start)
These are the x members of all positive solutions (x(n), y(n)), proper and improper, of the Pell equation x^2 - 2*y^2 = 7^2.
The y(n) members are given in 2*A276600(n+2).
This sequence is composed of the two y members of the two proper classes of solutions of the Pell equation x^2 - 2*y^2 = 7^2 and of 7 times the proper solutions X of the Pell equation X^2 - 2*Y^2 = +1. See A275793, A275795 and 7*A001541. See A275793 for further information, and the Nagell reference. (End)
The sums of the consecutive integers in the following sequences will be squares: for n, i >= 1, if mod(i,3)=0 then 7*n+1, 7*n+2, ..., a(i)*n + (A001541(i/3)-1)/2; otherwise, if mod(i,3)=1 or 2 then 7*n+4, 7*n+5, ..., a(i)*n + (a(i)-1)/2.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1001 (offset adapted by Georg Fischer, Jan 31 2019).
FORMULA
a(3*k) = A001541(k)*7 for k >= 2.
a(3*k+1) = (A001541(k+2) + A001541(k-1) + A001541(k) - A001541(k+1))/2;
a(3*k+2) = (A001541(k+2) + A001541(k-1) - A001541(k) + A001541(k+1))/2.
a(3*n) = A275793(n), a(3*n+1) = A275795(n), a(3*n+2) = 7*A001541(n+1), n >= 0. - Wolfdieter Lang, Sep 27 2016
From Colin Barker, Mar 29 2012: (Start)
a(n) = 6*a(n-3) - a(n-6).
G.f.: x*(9 + 11*x + 21*x^2 - 11*x^3 - 9*x^4 - 7*x^5)/(1 - 6*x^3 + x^6). (End)
EXAMPLE
In the following, aa(n) denotes A001541(n):
a(9)=693; as mod(9,3)=0, a(9)=aa(3)*7=99*7=693, also 693^2-49=2*490^2
a(10)=1451; as mod(10,3)=1, a(10)=(aa(5)+aa(2)+aa(3)-aa(4))/2 =(3363+17+99-577)/2=1451, also 1451^2-49=2*1026^2.
The solutions (proper and every third pair improper) of x^2 - 2*y^2 = +49 begin [9, 4], [11, 6], [21, 14], [43, 30], [57, 40], [119, 84], [249, 176], [331, 234], [693, 490], [1451, 1026], [1929, 1364], [4039, 2856], [8457, 5980], [11243, 7950], [23541, 16646], ... - Wolfdieter Lang, Sep 27 2016
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {9, 11, 21, 43, 57, 119}, 50] (* Vincenzo Librandi, Oct 26 2018 *)
PROG
(PARI) Vec((9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) + O(x^50)) \\ Colin Barker, Sep 28 2016
(Magma) I:=[9, 11, 21, 43, 57, 119]; [n le 6 select I[n] else 6*Self(n-3)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Oct 26 2018
(Sage)
def A106525_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) ).list()
a=A106525_list(41); a[1:] # G. C. Greubel, Sep 15 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005
EXTENSIONS
Entry revised by N. J. A. Sloane, Oct 26 2018 at the suggestion of Georg Fischer.
STATUS
approved