|
|
A106525
|
|
Values of x in x^2 - 49 = 2*y^2.
|
|
6
|
|
|
9, 11, 21, 43, 57, 119, 249, 331, 693, 1451, 1929, 4039, 8457, 11243, 23541, 49291, 65529, 137207, 287289, 381931, 799701, 1674443, 2226057, 4660999, 9759369, 12974411, 27166293, 56881771, 75620409, 158336759, 331531257, 440748043
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
From Wolfdieter Lang, Sep 27 2016: (Start)
These are the x members of all positive solutions (x(n), y(n)), proper and improper, of the Pell equation x^2 - 2*y^2 = 7^2.
The y(n) members are given in 2*A276600(n+2).
This sequence is composed of the two y members of the two proper classes of solutions of the Pell equation x^2 - 2*y^2 = 7^2 and of 7 times the proper solutions X of the Pell equation X^2 - 2*Y^2 = +1. See A275793, A275795 and 7*A001541. See A275793 for further information, and the Nagell reference. (End)
The sums of the consecutive integers in the following sequences will be squares: for n, i >= 1, if mod(i,3)=0 then 7*n+1, 7*n+2, ..., a(i)*n + (A001541(i/3)-1)/2; otherwise, if mod(i,3)=1 or 2 then 7*n+4, 7*n+5, ..., a(i)*n + (a(i)-1)/2.
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..1001 (offset adapted by Georg Fischer, Jan 31 2019).
Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
|
|
FORMULA
|
a(3*k) = A001541(k)*7 for k >= 2.
a(3*k+1) = (A001541(k+2) + A001541(k-1) + A001541(k) - A001541(k+1))/2;
a(3*k+2) = (A001541(k+2) + A001541(k-1) - A001541(k) + A001541(k+1))/2.
a(3*n) = A275793(n), a(3*n+1) = A275795(n), a(3*n+2) = 7*A001541(n+1), n >= 0. - Wolfdieter Lang, Sep 27 2016
From Colin Barker, Mar 29 2012: (Start)
a(n) = 6*a(n-3) - a(n-6).
G.f.: x*(9 + 11*x + 21*x^2 - 11*x^3 - 9*x^4 - 7*x^5)/(1 - 6*x^3 + x^6). (End)
|
|
EXAMPLE
|
In the following, aa(n) denotes A001541(n):
a(9)=693; as mod(9,3)=0, a(9)=aa(3)*7=99*7=693, also 693^2-49=2*490^2
a(10)=1451; as mod(10,3)=1, a(10)=(aa(5)+aa(2)+aa(3)-aa(4))/2 =(3363+17+99-577)/2=1451, also 1451^2-49=2*1026^2.
The solutions (proper and every third pair improper) of x^2 - 2*y^2 = +49 begin [9, 4], [11, 6], [21, 14], [43, 30], [57, 40], [119, 84], [249, 176], [331, 234], [693, 490], [1451, 1026], [1929, 1364], [4039, 2856], [8457, 5980], [11243, 7950], [23541, 16646], ... - Wolfdieter Lang, Sep 27 2016
|
|
MATHEMATICA
|
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {9, 11, 21, 43, 57, 119}, 50] (* Vincenzo Librandi, Oct 26 2018 *)
|
|
PROG
|
(PARI) Vec((9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) + O(x^50)) \\ Colin Barker, Sep 28 2016
(Magma) I:=[9, 11, 21, 43, 57, 119]; [n le 6 select I[n] else 6*Self(n-3)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Oct 26 2018
(Sage)
def A106525_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) ).list()
a=A106525_list(41); a[1:] # G. C. Greubel, Sep 15 2021
|
|
CROSSREFS
|
Cf. 14*A001109, 7*A001541, A106525, A106526.
Cf. A275793, A275794, A275795, A275796, 2*A276600.
Sequence in context: A299250 A074345 A022323 * A103510 A233402 A276406
Adjacent sequences: A106522 A106523 A106524 * A106526 A106527 A106528
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005
|
|
EXTENSIONS
|
Entry revised by N. J. A. Sloane, Oct 26 2018 at the suggestion of Georg Fischer.
|
|
STATUS
|
approved
|
|
|
|