login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106527
Values of x in x^2 - 289 = 2*y^2.
3
19, 33, 51, 81, 179, 289, 467, 1041, 1683, 2721, 6067, 9809, 15859, 35361, 57171, 92433, 206099, 333217, 538739, 1201233, 1942131, 3140001, 7001299, 11319569, 18301267, 40806561, 65975283, 106667601, 237838067, 384532129, 621704339
OFFSET
1,1
COMMENTS
The sums of the following consecutive integer sequences are squares for any integer i and n >=1: if mod(n,3) = 0, 17*i + 1, ..., a(n)*i + (A001541(n/3)-1)/2 if mod(n,3) = 1 or 2, 17*i + 9, ..., a(n)*i + (a(n) - 1)/2.
FORMULA
a(3n) = 17*A001541(n).
a(3n+1) = A001541(n+2) - A001541(n+1) - A001541(n) + 2*A001541(n-1).
a(3n+2) = 2*A001541(n+2) - A001541(n+1) - A001541(n) + A001541(n-1).
From Colin Barker, Mar 29 2012: (Start)
a(n) = 6*a(n-3) - a(n-6).
G.f.: x*(19 +33*x +51*x^2 -33*x^3 -19*x^4 -17*x^5)/(1 -6*x^3 +x^6). (End)
EXAMPLE
a(6) = 289, 17*A001541(2) = 17*17 = 289;
a(7) = 467, A001541(4) -A001541(3) -A001541(2) +2*A001541(1) = 577 -99 -17 + 2*3 = 467;
a(8) = 1041, 2*A001541(4) -A001541(3) -A001541(2) +A001541(1) = 2*577 -99 -17 +3 = 1041;
Also, a(8)^2 - 289 = 2*A106528(8)^2 : 1041^2 - 289 = 2*736^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {19, 33, 51, 81, 179, 289}, 40] (* G. C. Greubel, Aug 18 2021 *)
PROG
(Magma) I:=[19, 33, 51, 81, 179, 289]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..41]]; // G. C. Greubel, Aug 18 2021
(Sage)
def A106527_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(19 +33*x +51*x^2 -33*x^3 -19*x^4 -17*x^5)/(1 -6*x^3 +x^6) ).list()
a=A106527_list(41); a[1:] # G. C. Greubel, Aug 18 2021
CROSSREFS
Sequence in context: A152088 A372427 A362410 * A223608 A146438 A146571
KEYWORD
nonn
AUTHOR
Andras Erszegi (erszegi.andras(AT)chello.hu), May 09 2005
STATUS
approved