OFFSET
1,1
COMMENTS
Numbers k such that k*(k+1)*(k+2)/6 is the product of four distinct primes.
All terms are odd.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
a(3) = 45 is a term because 45*46*47/6 = 16215 = 3*5*23*47 is the product of four distinct primes.
MAPLE
filter:= k -> ifactors(k*(k+1)*(k+2)/6)[2][.., 2] = [1, 1, 1, 1];
select(filter, [seq(i, i=1..1000, 2)]);
MATHEMATICA
p4dpQ[n_]:=With[{c=(n(n+1)(n+2))/6}, PrimeNu[c]==PrimeOmega[c]==4]; Select[Range[ 700], p4dpQ] (* Harvey P. Dale, May 06 2024 *)
PROG
(PARI) isok(k) = my(t=k*(k+1)*(k+2)/6); (omega(t)==4) && (bigomega(t)==4); \\ Michel Marcus, Apr 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Apr 18 2023
STATUS
approved