login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106526
Values of y in x^2 - 49 = 2*y^2.
2
4, 6, 14, 30, 40, 84, 176, 234, 490, 1026, 1364, 2856, 5980, 7950, 16646, 34854, 46336, 97020, 203144, 270066, 565474, 1184010, 1574060, 3295824, 6900916, 9174294, 19209470, 40221486, 53471704, 111960996, 234428000, 311655930, 652556506
OFFSET
1,1
COMMENTS
The expression 2*n^2 + c with c = 49 yields more squares than any other value of c in the range 1 < c < 100 and n < 5*10^4. - K. D. Bajpai, Nov 04 2013
FORMULA
a(n) = 6*a(n-3) - a(n-6), with initial terms 4, 6, 14, 30, 40, 84. - T. D. Noe, Nov 04 2013
From G. C. Greubel, Aug 12 2021: (Start)
a(n) = 2*A276600(n+1).
G.f.: (2*x)*(2 + 3*x + 7*x^2 + 3*x^3 + 2*x^4)/(1 - 6*x^3 + x^6). (End)
EXAMPLE
a(12) = 2856; as 12 mod 3 = 0, a(12) = 14*A001109(12/3) = 204*14 = 2856; also 2*2856^2 = 4039^2 - 49, i.e., A106525(12)^2 - 49;
a(13) = 5980; as 13 mod 3 = 1, a(13) = A001109(4+2) - A001109(4+1) + A001109(4) + A001109(4-1) = 6930 - 1189 + 204 + 35 = 5980; also 2*5980^2 = 8457^2 - 49, i.e., A106525(13)^2 - 49;
a(14) = 7950; as 14 mod 3 = 2, a(14) = A001109(4+2) + A001109(4+1) - A001109(4) + A001109(4-1) = 6930 + 1189 - 204 + 35 = 7950; also 2*7950^2 = 11243^2 - 49, i.e., A106525(14)^2 - 49.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {4, 6, 14, 30, 40, 84}, 40] (* T. D. Noe, Nov 04 2013 *)
PROG
(Magma) I:=[4, 6, 14, 30, 40, 84]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..41]]; // G. C. Greubel, Aug 12 2021
(Sage)
def A106526_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (2*x)*(2 +3*x +7*x^2 +3*x^3 +2*x^4)/(1 -6*x^3 +x^6) ).list()
a=A106526_list(41); a[1:] # G. C. Greubel, Aug 12 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005
STATUS
approved