login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275794
One half of the y members of the positive proper solutions (x = x1(n), y = y1(n)) of the first class for the Pell equation x^2 - 2*y^2 = +7^2.
6
2, 15, 88, 513, 2990, 17427, 101572, 592005, 3450458, 20110743, 117214000, 683173257, 3981825542, 23207779995, 135264854428, 788381346573, 4595023225010, 26781758003487, 156095524795912, 909791390771985, 5302652819835998, 30906125528244003
OFFSET
0,1
COMMENTS
See A275793(n) for the x1(n) members and details as well as a reference.
FORMULA
a(n) = 15*S(n-1,6) - 2*S(n-2,6), with the Chebyshev polynomials S(n, 6) = A001109(n+1) for n >= -1, with S(-2, 6) = -1.
O.g.f: (2 + 3*x)/(1 - 6*x + x^2).
a(n) = 6*a(n-1) - a(n-2) for n >= 1, with a(-1) = -3 and a(0) = 2.
a(n) = (((3-2*sqrt(2))^n*(-9+4*sqrt(2))+(3+2*sqrt(2))^n*(9+4*sqrt(2)))) / (4*sqrt(2)). - Colin Barker, Sep 28 2016
EXAMPLE
See A275793.
MATHEMATICA
CoefficientList[Series[(2 + 3*x)/(1 - 6*x + x^2), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 29 2017 *)
LinearRecurrence[{6, -1}, {2, 15}, 30] (* Harvey P. Dale, May 30 2018 *)
PROG
(PARI) a(n) = round((((3-2*sqrt(2))^n*(-9+4*sqrt(2))+(3+2*sqrt(2))^n*(9+4*sqrt(2))))/(4*sqrt(2))) \\ Colin Barker, Sep 28 2016
(PARI) Vec((2+3*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Oct 02 2016
CROSSREFS
Sequence in context: A376135 A208974 A294196 * A037746 A037627 A192369
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 27 2016
STATUS
approved