login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275797
Primes for which the concatenation of the digits in the even positions and the concatenation of the digits in the odd positions are squares.
1
11, 19, 41, 409, 419, 449, 499, 811, 1061, 1069, 1861, 2459, 2851, 3061, 3469, 4091, 4099, 6449, 6841, 8011, 8419, 10211, 11261, 12251, 12659, 13669, 14699, 16649, 18211, 20809, 20849, 20899, 22859, 23869, 26849, 38611, 42451, 44491, 46441, 52259, 53269, 56249
OFFSET
1,1
LINKS
Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
EXAMPLE
419 is prime and numbers 49 and 1 are square.
12659 is prime and numbers 169 and 25 are square.
MATHEMATICA
halfQ[n_, k_] := IntegerQ[Sqrt[FromDigits[IntegerDigits[n][[k ;; -1 ;; 2]]]]];
Select[Range[200000], PrimeQ[#] && halfQ[#, 1] && halfQ[#, 2] &] (* Amiram Eldar, Nov 05 2018 *)
PROG
(Perl) use ntheory ':all'; forprimes { my @d = split(//, $_); if (is_square(join('', map { $d[2*$_] } (0..$#d/2))) && is_square(join('', map { $d[2*$_+1] } (0..@d/2-1)))) { print "$_, " } } 10**6; # Daniel Suteu, Dec 03 2018
(PARI) isok(p) = {if (isprime(p), my (d=digits(p)); if (#d > 1, if (#d % 2, lo = #d\2+1; le = #d\2, le = #d\2; lo = #d\2); issquare(fromdigits(vector(le, k, d[2*k]))) && issquare(fromdigits(vector(lo, k, d[2*k-1]))); ); ); } \\ Michel Marcus, Dec 05 2018
CROSSREFS
Sequence in context: A167535 A184328 A260271 * A376338 A294993 A201719
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Oct 26 2018
STATUS
approved