login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes for which the concatenation of the digits in the even positions and the concatenation of the digits in the odd positions are squares.
1

%I #55 Sep 17 2020 06:18:04

%S 11,19,41,409,419,449,499,811,1061,1069,1861,2459,2851,3061,3469,4091,

%T 4099,6449,6841,8011,8419,10211,11261,12251,12659,13669,14699,16649,

%U 18211,20809,20849,20899,22859,23869,26849,38611,42451,44491,46441,52259,53269,56249

%N Primes for which the concatenation of the digits in the even positions and the concatenation of the digits in the odd positions are squares.

%H Michael De Vlieger, <a href="/A275797/b275797.txt">Table of n, a(n) for n = 1..1000</a>

%H Jeremiah Bartz, Bruce Dearden, and Joel Iiams, <a href="https://arxiv.org/abs/1810.07895">Classes of Gap Balancing Numbers</a>, arXiv:1810.07895 [math.NT], 2018.

%H Jeremiah Bartz, Bruce Dearden, and Joel Iiams, <a href="https://ajc.maths.uq.edu.au/pdf/77/ajc_v77_p318.pdf">Counting families of generalized balancing numbers</a>, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.

%e 419 is prime and numbers 49 and 1 are square.

%e 12659 is prime and numbers 169 and 25 are square.

%t halfQ[n_, k_] := IntegerQ[Sqrt[FromDigits[IntegerDigits[n][[k ;; -1 ;; 2]]]]];

%t Select[Range[200000], PrimeQ[#] && halfQ[#, 1] && halfQ[#, 2] &] (* _Amiram Eldar_, Nov 05 2018 *)

%o (Perl) use ntheory ':all'; forprimes { my @d = split(//, $_); if (is_square(join('', map { $d[2*$_] } (0..$#d/2))) && is_square(join('', map { $d[2*$_+1] } (0..@d/2-1)))) { print "$_, " } } 10**6; # _Daniel Suteu_, Dec 03 2018

%o (PARI) isok(p) = {if (isprime(p), my (d=digits(p)); if (#d > 1, if (#d % 2, lo = #d\2+1; le = #d\2, le = #d\2; lo = #d\2); issquare(fromdigits(vector(le, k, d[2*k]))) && issquare(fromdigits(vector(lo, k, d[2*k-1])));););} \\ _Michel Marcus_, Dec 05 2018

%Y Cf. A000040, A000290.

%K nonn,base

%O 1,1

%A _Marius A. Burtea_, Oct 26 2018