login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275799
Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and three squares have one of the colors.
3
1, 22, 140, 578, 1785, 4612, 10416, 21340, 40425, 72010, 121836, 197582, 308945, 468328, 690880, 995352, 1404081, 1944030, 2646700, 3549370, 4694921, 6133292, 7921200, 10123828, 12814425, 16076242, 20001996, 24696070, 30273825, 36864080
OFFSET
2,2
COMMENTS
See the k=3 column of table A054772(n, k), with more explanations there.
FORMULA
a(n) = A054772(n, 3) = A054772(n, n^2-3), n >= 2.
From Colin Barker, Oct 09 2016: (Start)
G.f.: x^2*(1+18*x+55*x^2+92*x^3+55*x^4+18*x^5+x^6) / ((1-x)^7*(1+x)^3).
a(n) = (n^6-3*n^4+2*n^2)/24 for n even.
a(n) = (n^6-3*n^4+5*n^2-3)/24 for n odd. (End)
From Stefan Hollos, Oct 16 2016: (Start)
a(n) = C(n^2,3)/4 for n even,
a(n) = (C(n^2,3) + (n^2-1)/2)/4 for n odd. (End)
PROG
(PARI) Vec(x^2*(1+18*x+55*x^2+92*x^3+55*x^4+18*x^5+x^6)/((1-x)^7*(1+x)^3) + O(x^40)) \\ Colin Barker, Oct 16 2016
CROSSREFS
Cf. A054772, A000012 (k=0), A004652 (k=1), A212714 (k=2).
Sequence in context: A183909 A263481 A238170 * A185397 A179792 A125332
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 03 2016
STATUS
approved