login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and three squares have one of the colors.
3

%I #23 Oct 17 2016 03:50:21

%S 1,22,140,578,1785,4612,10416,21340,40425,72010,121836,197582,308945,

%T 468328,690880,995352,1404081,1944030,2646700,3549370,4694921,6133292,

%U 7921200,10123828,12814425,16076242,20001996,24696070,30273825,36864080

%N Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and three squares have one of the colors.

%C See the k=3 column of table A054772(n, k), with more explanations there.

%H Colin Barker, <a href="/A275799/b275799.txt">Table of n, a(n) for n = 2..1000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3,-8,14,0,-14,8,3,-4,1).

%F a(n) = A054772(n, 3) = A054772(n, n^2-3), n >= 2.

%F From _Colin Barker_, Oct 09 2016: (Start)

%F G.f.: x^2*(1+18*x+55*x^2+92*x^3+55*x^4+18*x^5+x^6) / ((1-x)^7*(1+x)^3).

%F a(n) = (n^6-3*n^4+2*n^2)/24 for n even.

%F a(n) = (n^6-3*n^4+5*n^2-3)/24 for n odd. (End)

%F From _Stefan Hollos_, Oct 16 2016: (Start)

%F a(n) = C(n^2,3)/4 for n even,

%F a(n) = (C(n^2,3) + (n^2-1)/2)/4 for n odd. (End)

%o (PARI) Vec(x^2*(1+18*x+55*x^2+92*x^3+55*x^4+18*x^5+x^6)/((1-x)^7*(1+x)^3) + O(x^40)) \\ _Colin Barker_, Oct 16 2016

%Y Cf. A054772, A000012 (k=0), A004652 (k=1), A212714 (k=2).

%K nonn,easy

%O 2,2

%A _Wolfdieter Lang_, Oct 03 2016