|
|
A022323
|
|
a(n) = a(n-1) + a(n-2) + 1, with a(0) = 1 and a(1) = 9.
|
|
2
|
|
|
1, 9, 11, 21, 33, 55, 89, 145, 235, 381, 617, 999, 1617, 2617, 4235, 6853, 11089, 17943, 29033, 46977, 76011, 122989, 199001, 321991, 520993, 842985, 1363979, 2206965, 3570945, 5777911, 9348857
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
|
|
FORMULA
|
From R. J. Mathar, Apr 07 2011: (Start)
G.f.: (1+7*x-7*x^2)/((1-x)*(1-x-x^2)).
a(n) = A022367(n) - 1. (End)
a(n) = 2*F(n+2) + 6*F(n) - 1, where F = A000045. - G. C. Greubel, Aug 25 2017
|
|
MATHEMATICA
|
LinearRecurrence[{2, 0, -1}, {1, 9, 11}, 50] (* G. C. Greubel, Aug 25 2017 *)
|
|
PROG
|
(PARI) x='x+O('x^50); Vec((1+7*x-7*x^2)/((1-x)*(1-x-x^2))) \\ G. C. Greubel, Aug 25 2017
|
|
CROSSREFS
|
Sequence in context: A258452 A299250 A074345 * A106525 A103510 A233402
Adjacent sequences: A022320 A022321 A022322 * A022324 A022325 A022326
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|