|
|
A007068
|
|
a(n) = a(n-1) + (3+(-1)^n)*a(n-2)/2.
(Formerly M2360)
|
|
11
|
|
|
1, 3, 4, 10, 14, 34, 48, 116, 164, 396, 560, 1352, 1912, 4616, 6528, 15760, 22288, 53808, 76096, 183712, 259808, 627232, 887040, 2141504, 3028544, 7311552, 10340096, 24963200, 35303296, 85229696, 120532992, 290992384, 411525376
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
First row of spectral array W(sqrt 2).
Row sums of the square of the matrix with general term binomial(floor(n/2),n-k). - Paul Barry, Feb 14 2005
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
a(2n+1) = a(2n)+a(2n-1); a(2n) = a(2n-1)+2*a(2n-2); same recurrence (mod parity) as A001882). - Len Smiley, Feb 05 2001
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(floor(n/2), n-j)*C(floor(j/2), j-k). - Paul Barry, Feb 14 2005
a(n) = 4*a(n-2)-2*a(n-4). G.f.: -x*(1+x)*(2*x^2-2*x-1)/(1-4*x^2+2*x^4). a(2n+1)=A007070(n). a(2n)=A007052(n). [R. J. Mathar, Aug 17 2009]
a(n) = (1-1/2*(-1)^n)*((2-sqrt(2))^(1/4*(2*n+(-1)^n-1))+(2+sqrt(2))^(1/4*(2*n+(-1)^n-1)))+(1/4*sqrt(2)*(-1)^n-3/4*sqrt(2))*((2-sqrt(2))^(1/4*(2*n+(-1)^n-1))-(2+sqrt(2))^(1/4*(2*n+(-1)^n-1))). - Paolo P. Lava, Feb 13 2012
|
|
MATHEMATICA
|
RecurrenceTable[{a[1]==1, a[2]==3, a[n]==a[n-1]+(3+(-1)^n) a[n-2]/2}, a[n], {n, 40}] (* Harvey P. Dale, Nov 12 2012 *)
|
|
PROG
|
(Haskell)
a007068 n = a007068_list !! (n-1)
a007068_list = 1 : 3 : zipWith (+)
(tail a007068_list) (zipWith (*) a000034_list a007068_list)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice,changed
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|