The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007052 Number of order-consecutive partitions of n. (Formerly M2847) 87
 1, 3, 10, 34, 116, 396, 1352, 4616, 15760, 53808, 183712, 627232, 2141504, 7311552, 24963200, 85229696, 290992384, 993510144, 3392055808, 11581202944, 39540700160, 135000394752, 460920178688, 1573679925248 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS After initial terms, first differs from A291292 at a(6) = 1352, A291292(8) = 1353. Joe Keane (jgk(AT)jgk.org) observes that this sequence (beginning at 3) is "size of raises in pot-limit poker, one blind, maximum raising". It appears that this sequence is the BinomialMean transform of A001653 (see A075271). - John W. Layman, Oct 03 2002 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,....,2n+1, s(0) = 3, s(2n+1) = 4. - Herbert Kociemba, Jun 12 2004 Equals the INVERT transform of (1, 2, 5, 13, 34, 89,...). [Gary W. Adamson, May 01 2009] a(n) is the number of compositions of n when there are 3 types of ones. [Milan Janjic, Aug 13 2010] a(n)/a(n-1) tends to (4 + sqrt(8))/2 = 3.414213.... Gary W. Adamson, Jul 30 2013 a(n) is the first sub-diagonal of array A228405. - Richard R. Forberg, Sep 02 2013 Number of words of length n over {0,1,2,3,4} in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017 From Gus Wiseman, Mar 05 2020: (Start) Also the number of unimodal sequences of length n + 1 covering an initial interval of positive integers, where a sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. For example, the a(0) = 1 through a(2) = 10 sequences are:   (1)  (1,1)  (1,1,1)        (1,2)  (1,1,2)        (2,1)  (1,2,1)               (1,2,2)               (1,2,3)               (1,3,2)               (2,1,1)               (2,2,1)               (2,3,1)               (3,2,1) Missing are: (2,1,2), (2,1,3), (3,1,2). Conjecture: Also the number of ordered set partitions of {1..n + 1} where no element of any block is greater than any element of a non-adjacent consecutive block. For example, the a(0) = 1 through a(2) = 10 ordered set partitions are:   {{1}}  {{1,2}}    {{1,2,3}}          {{1},{2}}  {{1},{2,3}}          {{2},{1}}  {{1,2},{3}}                     {{1,3},{2}}                     {{2},{1,3}}                     {{2,3},{1}}                     {{3},{1,2}}                     {{1},{2},{3}}                     {{1},{3},{2}}                     {{2},{1},{3}} Cf. A000670, A056242, A332673, A332872. (End) REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 S. Barbero, U. Cerruti, N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences , J. Int. Seq. 13 (2010) # 10.9.7, proposition 16. Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, Involve, Vol. 8 (2015), No. 1, 25-32. F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, Preprint. (Annotated scanned copy) F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 164 Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3. J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. N. J. A. Sloane, Transforms M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1. Index entries for linear recurrences with constant coefficients, signature (4,-2). FORMULA a(n+1) = 4a(n)-2a(n-1). G.f.: (1-x)/(1-4x+2x^2). Binomial transform of Pell numbers 1, 2, 5, 12, ... (A000129). a(n) = A006012(n+1)/2 = A056236(n+1)/4. - Michael Somos, Mar 06 2003 a(n) = (A035344(n)+1)/2; a(n) = (2+sqrt(2))^n(1/2+sqrt(2)/4)+(2-sqrt(2))^n(1/2-sqrt(2)/4). - Paul Barry, Jul 16 2003 Second binomial transform of (1, 1, 2, 2, 4, 4, ...). a(n) = sum{k=1..floor(n/2), C(n, 2k)2^(n-k-1)}. - Paul Barry, Nov 22 2003 a(n) = ( (2-Sqrt(2))^(n+1)+(2+Sqrt(2))^(n+1) )/4. - Herbert Kociemba, Jun 12 2004 a(n) = both left and right terms in M^n * [1 1 1], where M = the 3X3 matrix [1 1 1 / 1 2 1 / 1 1 1]. M^n * [1 1 1] = [a(n) A007070(n) a(n)]. E.g. a(3) = 34. M^3 * [1 1 1] = [34 48 34]. (center term is A007070(3)) - Gary W. Adamson, Dec 18 2004 The i-th term of the sequence is the entry (2, 2) in the i-th power of the 2 by 2 matrix M=((1, 1), (1, 3)). - Simone Severini, Oct 15 2005 E.g.f. : exp(2x)(cosh(sqrt(2x)+sinh(sqrt(2)x)/sqrt(2). - Paul Barry, Nov 20 2003 a(n) = A007068(2*n), n>0. [R. J. Mathar, Aug 17 2009] If p[i]=fibonacci(2i-1) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. [Milan Janjic, May 08 2010] a(n-1) = sum((-1)^k*binomial(2*n,n+4*k)/2, k=-floor(n/4)..floor(n/4)). [Mircea Merca, Jan 28 2012] G.f.: G(0)*(1-x)/(2*x) + 1 - 1/x, where G(k)= 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - (1-x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013 a(n) = 3*a(n-1) + a(n-2) + a(n-3) + a(n-4) + ... + a(0). [Gary W. Adamson, Aug 12 2013] a(n) = a(-2-n) * 2^(n+1) for all n in Z. - Michael Somos, Jan 25 2017 EXAMPLE G.f. = 1 + 3*x + 10*x^2 + 34*x^3 + 116*x^4 + 396*x^5 + 1352*x^6 + 4616*x^7 + ... MATHEMATICA a[n_]:=(MatrixPower[{{3, 1}, {1, 1}}, n].{{2}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *) a[ n_] := ((2 + Sqrt)^(n + 1) + (2 - Sqrt)^(n + 1)) / 4 // Simplify; (* Michael Somos, Jan 25 2017 *) LinearRecurrence[{4, -2}, {1, 3}, 24] (* Jean-François Alcover, Jan 07 2019 *) unimodQ[q_]:=Or[Length[q]<=1, If[q[]<=q[], unimodQ[Rest[q]], OrderedQ[Reverse[q]]]]; allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]]; Table[Length[Select[Union@@Permutations/@allnorm[n], unimodQ]], {n, 6}] (* Gus Wiseman, Mar 06 2020 *) PROG (PARI) {a(n) = real((2 + quadgen(8))^(n+1)) / 2}; /* Michael Somos, Mar 06 2003 */ (MAGMA) [Floor((2+Sqrt(2))^n*(1/2+Sqrt(2)/4)+(2-Sqrt(2))^n*(1/2-Sqrt(2)/4)): n in [0..30] ] ; // Vincenzo Librandi, Aug 20 2011 CROSSREFS Cf. A006012, A003480, A056236. First differences of A007070. Cf. A000670, A001523, A060223, A227038, A328509, A332577, A332743, A332873. Sequence in context: A255813 A113300 A332872 * A048580 A291292 A289612 Adjacent sequences:  A007049 A007050 A007051 * A007053 A007054 A007055 KEYWORD nonn,easy AUTHOR Colin Mallows, N. J. A. Sloane, Simon Plouffe STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 18:53 EDT 2021. Contains 343050 sequences. (Running on oeis4.)