The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035344 Expansion of 1/((1 - x)*(1 - 4*x + 2 * x^2)). 5
 1, 5, 19, 67, 231, 791, 2703, 9231, 31519, 107615, 367423, 1254463, 4283007, 14623103, 49926399, 170459391, 581984767, 1987020287, 6784111615, 23162405887, 79081400319, 270000789503, 921840357375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES S. Bilotta, E. Pergola, R. Pinzani, S. Rinaldi, Recurrence Relations, Succession Rules, and the Positivity Problem, in Language and Automata Theory and Applications, 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings, Pages 499-510, Lecture Notes Comp. Sci. Vol. 8977. LINKS S. Bilotta, E. Pergola, R. Pinzani, S. Rinaldi, Recurrence relations versus succession rules, arXiv preprint arXiv:1301.2967 [cs.DM], 2013. László Németh, Hyperbolic Pascal pyramid, arXiv:1511.02067 [math.CO], 2015 (2nd line of Table 2 is 6*a(n-3)). László Németh, Pascal pyramid in the space H^2 x R, arXiv:1701.06022 [math.CO], 2017 (2nd line of Table is 2*a(n-3)). Index entries for linear recurrences with constant coefficients, signature (5,-6,2). FORMULA a(n) = 2*A007052(n)-1. The sequence 0, 0, 1, 5, 19, ... is the binomial transform of the Pell numbers A000129, preceded by an additional 0. a(n) = (1 + 1/sqrt(2))(2 + sqrt(2))^n + (1 - 1/sqrt(2))(2 - sqrt(2))^n - 1. - Paul Barry, Jul 16 2003 a(-1)=0, a(0)=1, a(n) = 4*a(n-1) - 2*a(n-2) + 1. - Miklos Kristof, Mar 09 2005 MAPLE a[ -1]:=0:a:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-2*a[n-2]+1 od: seq(a[n], n=0..50); # after Miklos Kristof MATHEMATICA Join[{a=1, b=5}, Table[c=4*b-2*a+1; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *) CoefficientList[Series[1/((1-x)(1-4x+2x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[ {5, -6, 2}, {1, 5, 19}, 30] (* Harvey P. Dale, Mar 28 2016 *) PROG (PARI) Vec(1/((1-x)*(1-4*x+2*x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012 CROSSREFS Partial sums of A007070. Sequence in context: A273599 A121525 A163872 * A114277 A104496 A001435 Adjacent sequences:  A035341 A035342 A035343 * A035345 A035346 A035347 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 13:40 EDT 2020. Contains 335401 sequences. (Running on oeis4.)