login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035341 Sum of ordered factorizations over all prime signatures with n factors. 9
1, 1, 5, 25, 173, 1297, 12225, 124997, 1492765, 19452389, 284145077, 4500039733, 78159312233, 1460072616929, 29459406350773, 634783708448137, 14613962109584749, 356957383060502945, 9241222160142506097, 252390723655315856437, 7260629936987794508973 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Let f(n) = number of ordered factorizations of n (A074206(n)); a(n) = sum of f(k) over all terms k in A025487 that have n factors.

When the unordered spectrum A035310 is so ordered the sequences A000041 A000070 ...A035098 A000110 yield A000079 A001792 ... A005649 A000670 respectively.

Row sums of A095705. - David Wasserman, Feb 22 2008

LINKS

David Wasserman and Alois P. Heinz, Table of n, a(n) for n = 0..250 (first 36 terms from David Wasserman)

Eric Weisstein's World of Mathematics, Perfect Partition

FORMULA

a(n) ~ c * n! / log(2)^n, where c = 1/(2*log(2)) * Product_{k>=2} 1/(1-1/k!) = A247551 / (2*log(2)) = 1.8246323... . - Vaclav Kotesovec, Jan 21 2017

EXAMPLE

a(3) = 25 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=4, f(12)=8, f(30)=13 and 4+8+13 = 25.

MAPLE

b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))

    end:

a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):

seq(a(n), n=0..25);  # Alois P. Heinz, Aug 29 2015

MATHEMATICA

Unprotect[Power]; 0^0 = 1; b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i < 1, 0, Sum[b[n-i*j, i-1, k]*Binomial[i+k-1, k-1]^j, {j, 0, n/i}]]]; a[n_] := Sum[Sum[b[n, n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A005651, A025487, A035310.

Row sums of A261719.

Sequence in context: A125794 A109793 A112242 * A258369 A137383 A049035

Adjacent sequences:  A035338 A035339 A035340 * A035342 A035343 A035344

KEYWORD

nonn,nice

AUTHOR

Alford Arnold

EXTENSIONS

More terms from Erich Friedman.

More terms from David Wasserman, Feb 22 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 10:56 EDT 2018. Contains 316379 sequences. (Running on oeis4.)