login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258369
Stirling-Bernoulli transform of A027656.
1
1, 1, 5, 25, 173, 1441, 14165, 160105, 2044733, 29105521, 456781925, 7834208185, 145760370893, 2923764916801, 62891469229685, 1444055265984265, 35250519098274653, 911569049328779281, 24893164161460525445, 715822742720760256345, 21620050147748210572013
OFFSET
0,3
COMMENTS
Also called Akiyama-Tanigawa transform of A027656.
FORMULA
a(n) = Sum_{k = 0..n} A163626(n,k)*A027656(k).
a(n) = Sum_{k>=0} A249163(n,k) * (k+1).
E.g.f.: 1/(exp(x)*(2 - exp(x))^2).
a(n) ~ n! * n / (8 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
EXAMPLE
a(0) = 1*1 = 1.
a(1) = 1*1 = 1.
a(2) = 1*1 + 2*2 = 5.
a(3) = 1*1 + 12*2 = 25.
a(4) = 1*1 + 50*2 + 24*3 = 173.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, May 28 2015
STATUS
approved