login
Stirling-Bernoulli transform of A027656.
1

%I #12 Jul 01 2018 07:27:13

%S 1,1,5,25,173,1441,14165,160105,2044733,29105521,456781925,7834208185,

%T 145760370893,2923764916801,62891469229685,1444055265984265,

%U 35250519098274653,911569049328779281,24893164161460525445,715822742720760256345,21620050147748210572013

%N Stirling-Bernoulli transform of A027656.

%C Also called Akiyama-Tanigawa transform of A027656.

%F a(n) = Sum_{k = 0..n} A163626(n,k)*A027656(k).

%F a(n) = Sum_{k>=0} A249163(n,k) * (k+1).

%F E.g.f.: 1/(exp(x)*(2 - exp(x))^2).

%F a(n) ~ n! * n / (8 * (log(2))^(n+2)). - _Vaclav Kotesovec_, Jul 01 2018

%e a(0) = 1*1 = 1.

%e a(1) = 1*1 = 1.

%e a(2) = 1*1 + 2*2 = 5.

%e a(3) = 1*1 + 12*2 = 25.

%e a(4) = 1*1 + 50*2 + 24*3 = 173.

%Y Cf. A027656, A163626, A249163.

%K nonn,easy

%O 0,3

%A _Philippe Deléham_, May 28 2015