OFFSET
1,2
COMMENTS
A035098 and A000070 are near the two ends of a spectrum. Another way to look at A000070 is as the number of partitions of an n-multiset with multiplicities n-1, 1.
The very ends are the number of partitions and the Stirling numbers of the second kind, which count the n-multiset partitions with multiplicities n and 1,1,1,...,1, respectively.
Intermediate sequences are the number of ways of partitioning an n-multiset with multiplicities some partition of n.
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..576 (first 200 terms from Vincenzo Librandi)
M. Griffiths, Generalized Near-Bell Numbers, JIS 12 (2009) 09.5.7.
M. Griffiths, I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
Martin Griffiths, Generating Functions for Extended Stirling Numbers of the First Kind, Journal of Integer Sequences, 17 (2014), #14.6.4.
FORMULA
Sum_{k=0..n} Stirling2(n, k)*((k+1)*(k+2)/2+1). E.g.f.: 1/2*(1+exp(x))^2*exp(exp(x)-1). (1/2)*(Bell(n)+Bell(n+1)+Bell(n+2)). - Vladeta Jovovic, Sep 23 2003 [for offset -1]
a(n) ~ Bell(n)/2 * (1 + LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021
EXAMPLE
a(3)=4 because there are 4 ways to partition the multiset {1,2,2} (with multiplicities {1,2}): {{1,2,2}} {{1,2},{2}} {{1},{2,2}} {{1},{2},{2}}.
MAPLE
with(combinat): a:= n-> floor(1/2*(bell(n-2)+bell(n-1)+bell(n))): seq(a(n), n=1..25); # Zerinvary Lajos, Oct 07 2007
MATHEMATICA
f[n_] := Sum[ StirlingS2[n, k] ((k + 1) (k + 2)/2 + 1), {k, 0, n}]; Array[f, 22, 0]
f[n_] := (BellB[n] + BellB[n + 1] + BellB[n + 2])/2; Array[f, 22, 0]
Range[0, 21]! CoefficientList[ Series[ (1 + Exp@ x)^2/2 Exp[ Exp@ x - 1], {x, 0, 21}], x] (* 3 variants by Robert G. Wilson v, Jan 13 2011 *)
Join[{1}, Total[#]/2&/@Partition[BellB[Range[0, 30]], 3, 1]] (* Harvey P. Dale, Jan 02 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Sep 23 2003
STATUS
approved