OFFSET
0,2
COMMENTS
Sum of last number in all set partitions of n+1. E.g. The set partitions of 3 are {1,1,1}, {1,1,2}, {1,2,1}, {1,2,2} and {1,2,3}, so a(2) = 1+2+1+2+3 = 9. - Franklin T. Adams-Watters, Jun 07 2006
Number of partitions of the (n+2)-multiset {0,0,1,2,...,n} into distinct multisets. Also number of factorizations of 2 * Product_{i=1..n+1} prime(i) into distinct factors. - Alois P. Heinz, Jul 30 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
MATHEMATICA
f[0]=1; f[n_] := Sum[ StirlingS2[n, k]*Binomial[k+2, k ], {k, 1, n}]; Table[ f[n], {n, 0, 20}] (* Zerinvary Lajos, Mar 31 2007 *)
(#[[3]]+#[[2]]-#[[1]])/2&/@Partition[BellB[Range[0, 30]], 3, 1] (* Harvey P. Dale, Jul 20 2021 *)
PROG
(Magma) [(1/2)*(Bell(n+2)+Bell(n+1)-Bell(n)) : n in [0..30]]; // Vincenzo Librandi, Nov 13 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Sep 23 2003
STATUS
approved