login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322770
Array read by upwards antidiagonals: T(m,n) = number of set partitions into distinct parts of the multiset consisting of one copy each of x_1, x_2, ..., x_m, and two copies each of y_1, y_2, ..., y_n, for m >= 0, n >= 0.
10
1, 1, 1, 2, 3, 5, 5, 9, 18, 40, 15, 31, 70, 172, 457, 52, 120, 299, 801, 2295, 6995, 203, 514, 1393, 4025, 12347, 40043, 136771, 877, 2407, 7023, 21709, 70843, 243235, 875936, 3299218, 4140, 12205, 38043, 124997, 431636, 1562071, 5908978, 23308546, 95668354
OFFSET
0,4
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. (Background information.)
LINKS
D. E. Knuth, Partitioning a multiset into submultisets, Email to N. J. A. Sloane, Dec 29 2018.
FORMULA
Knuth gives a recurrence using the Bell numbers A000110 (see Maple program).
EXAMPLE
The array begins:
1, 1, 5, 40, 457, 6995, 136771, ...
1, 3, 18, 172, 2295, 40043, 875936, ...
2, 9, 70, 801, 12347, 243235, 5908978, ...
5, 31, 299, 4025, 70843, 1562071, 41862462, ...
15, 120, 1393, 21709, 431636, 10569612, 310606617, ...
52, 514, 7023, 124997, 2781372, 75114998, 2407527172, ...
203, 2407, 38043, 764538, 18885177, 559057663, 19449364539, ...
...
MAPLE
B := n -> combinat[bell](n):
Q := proc(m, n) local k; global B; option remember;
if n = 0 then B(m) else
(1/2)*( Q(m+2, n-1) + Q(m+1, n-1) - add( binomial(n-1, k)*Q(m, k), k=0..n-1) ); fi; end; # Q(m, n) (which is Knuth's notation) is T(m, n)
MATHEMATICA
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];
Table[Q[m-n, n], {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 02 2019, from Maple *)
CROSSREFS
Rows include A094574, A322771, A322772.
Columns include A000110, A087648, A322773, A322774.
Main diagonal is A322775.
Sequence in context: A222705 A241381 A237365 * A257008 A338750 A265822
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Dec 30 2018
STATUS
approved