login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322767
Row 2 of array in A322765.
3
2, 11, 92, 1075, 16601, 325269, 7837862, 226700129, 7720099374, 304732680254, 13763771702539, 703691774091622, 40351866669219915, 2574830780826344436, 181574292457398520558, 14065771632972561098569, 1190588796562104776974207
OFFSET
0,1
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.
LINKS
FORMULA
a(n) = A346500(n,n+2) = A346500(n+2,n). - Alois P. Heinz, Jul 21 2021
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n<k, A(k, n),
`if`(k=0, b(n), (A(n+1, k-1)+add(A(n-k+j, j)
*binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))
end:
a:= n-> A(n, n+2):
seq(a(n), n=0..22); # Alois P. Heinz, Jul 21 2021
MATHEMATICA
P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])];
a[n_] := P[2, n];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Apr 29 2022 *)
CROSSREFS
Sequence in context: A222080 A122708 A337012 * A292424 A225623 A005366
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 30 2018
STATUS
approved