login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222080
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (2*n+1)*x)^2.
2
1, 2, 11, 92, 1013, 13726, 219919, 4057048, 84545129, 1961698586, 50111003987, 1396488977908, 42139540225501, 1368234341961718, 47547441824994647, 1760308790559597104, 69151746439874522321, 2872358517303945656242, 125758844338252841129371, 5787515297333376814677004
OFFSET
0,2
COMMENTS
A self-convolution of an integer sequence (A222081).
LINKS
EXAMPLE
The terms satisfy:
1 = (1-x)^2 + 2*x*(1-3*x)^2 + 11*x^2*(1-5*x)^2 + 92*x^3*(1-7*x)^2 + 1013*x^4*(1-9*x)^2 + 13726*x^5*(1-11*x)^2 + 219919*x^6*(1-13*x)^2 +...
G.f.: A(x) = 1 + 2*x + 11*x^2 + 92*x^3 + 1013*x^4 + 13726*x^5 + 219919*x^6 + 4057048*x^7 + 84545129*x^8 +...
The square-root of g.f. A(x) is an integer series:
A(x)^(1/2) = 1 + x + 5*x^2 + 41*x^3 + 453*x^4 + 6205*x^5 + 100649*x^6 + 1878277*x^7 + 39534033*x^8 +...+ A222081(n)*x^n +...
PROG
(PARI) {a(n)=polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(2*m+1)*x+x*O(x^n))^2), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A222081.
Sequence in context: A143870 A047854 A366402 * A122708 A337012 A322767
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 07 2013
STATUS
approved