login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (2*n+1)*x)^2.
2

%I #6 Feb 08 2013 01:08:45

%S 1,2,11,92,1013,13726,219919,4057048,84545129,1961698586,50111003987,

%T 1396488977908,42139540225501,1368234341961718,47547441824994647,

%U 1760308790559597104,69151746439874522321,2872358517303945656242,125758844338252841129371,5787515297333376814677004

%N G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (2*n+1)*x)^2.

%C A self-convolution of an integer sequence (A222081).

%H Paul D. Hanna, <a href="/A222080/b222080.txt">Table of n, a(n) for n = 0..300</a>

%e The terms satisfy:

%e 1 = (1-x)^2 + 2*x*(1-3*x)^2 + 11*x^2*(1-5*x)^2 + 92*x^3*(1-7*x)^2 + 1013*x^4*(1-9*x)^2 + 13726*x^5*(1-11*x)^2 + 219919*x^6*(1-13*x)^2 +...

%e G.f.: A(x) = 1 + 2*x + 11*x^2 + 92*x^3 + 1013*x^4 + 13726*x^5 + 219919*x^6 + 4057048*x^7 + 84545129*x^8 +...

%e The square-root of g.f. A(x) is an integer series:

%e A(x)^(1/2) = 1 + x + 5*x^2 + 41*x^3 + 453*x^4 + 6205*x^5 + 100649*x^6 + 1878277*x^7 + 39534033*x^8 +...+ A222081(n)*x^n +...

%o (PARI) {a(n)=polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(2*m+1)*x+x*O(x^n))^2), n)}

%o for(n=0,25,print1(a(n),", "))

%Y Cf. A222081.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Feb 07 2013