login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047854
a(n) = T(6,n), array T given by A047848.
8
1, 2, 11, 92, 821, 7382, 66431, 597872, 5380841, 48427562, 435848051, 3922632452, 35303692061, 317733228542, 2859599056871, 25736391511832, 231627523606481, 2084647712458322, 18761829412124891, 168856464709124012, 1519708182382116101, 13677373641439044902, 123096362772951404111
OFFSET
0,2
COMMENTS
n-th difference of a(n), a(n-1), ..., a(0) is 8^(n-1) for n=1, 2, 3, ...
Also, the cogrowth sequence of the 16-element group D4 X C2 = <S,T,U | S^4, T^2, U^2, (ST)^2, [S,T], [U,T]>. - Sean A. Irvine, Nov 10 2024
FORMULA
a(n) = (9^n + 7)/8. - Ralf Stephan, Feb 14 2004
From Philippe Deléham, Oct 06 2009: (Start)
a(0) = 1, a(1) = 2, a(n) = 10*a(n-1) - 9*a(n-2) for n > 1.
G.f.: (1 - 8*x)/(1 - 10*x + 9*x^2). (End)
a(n) = 9*a(n-1) - 7 (with a(0)=1). - Vincenzo Librandi, Aug 06 2010
exp(x)*(exp(8*x) + 7)/8. - Elmo R. Oliveira, Aug 29 2024
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=9*a[n-1]+1 od: seq(a[n]+1, n=0..17); # Zerinvary Lajos, Mar 20 2008
MATHEMATICA
a = {}; ZZ = 1; Do[ZZ = ZZ + 3^(2x); AppendTo[a, ZZ], {x, 0, 17}]; a (* Zerinvary Lajos, Apr 03 2007 *)
CROSSREFS
Cf. A047848.
Sequence in context: A094955 A352292 A143870 * A366402 A222080 A122708
KEYWORD
nonn,easy
EXTENSIONS
a(18)-a(22) from Elmo R. Oliveira, Aug 29 2024
STATUS
approved