login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222081
Self-convolution equals A222080.
2
1, 1, 5, 41, 453, 6205, 100649, 1878277, 39534033, 924986401, 23790991061, 666732284009, 20211529694661, 658743175016461, 22964324182662569, 852450674859207605, 33563386167190876321, 1396839898167086931137, 61260669590285253202981, 2823455397312949805962921
OFFSET
0,3
COMMENTS
A222080 satisfies: 1 = Sum_{n>=0} A222080(n)*x^n*(1 - (2*n+1)*x)^2.
LINKS
FORMULA
a(n) == 1 (mod 4).
Limit A222080(n)/a(n) = 2.
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 41*x^3 + 453*x^4 + 6205*x^5 + 100649*x^6 +...
where
A(x)^2 = 1 + 2*x + 11*x^2 + 92*x^3 + 1013*x^4 + 13726*x^5 + 219919*x^6 +...+ A222080(n)*x^n +...
such that A222080 satisfies:
1 = (1-x)^2 + 2*x*(1-3*x)^2 + 11*x^2*(1-5*x)^2 + 92*x^3*(1-7*x)^2 + 1013*x^4*(1-9*x)^2 + 13726*x^5*(1-11*x)^2 + 219919*x^6*(1-13*x)^2 +...+ A222080(n)*x^n*(1 - (2*n+1)*x)^2 +...
PROG
(PARI) {A222080(n)=polcoeff(1-sum(m=0, n-1, A222080(m)*x^m*(1-(2*m+1)*x+x*O(x^n))^2), n)}
{a(n)=polcoeff(sqrt(sum(k=0, n, A222080(k)*x^k+x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A222080.
Sequence in context: A115257 A225095 A302100 * A047735 A096364 A210661
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 07 2013
STATUS
approved