The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A222084 Number of the least divisors of n whose LCM is equal to n. 7
 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 5, 2, 4, 3, 3, 2, 6, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 6, 2, 3, 3, 5, 2, 5, 2, 4, 4, 3, 2, 8, 3, 5, 3, 4, 2, 7, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 5, 2, 4, 3, 4, 2, 7, 2, 3, 5, 4, 3, 5, 2, 7, 5, 3, 2, 6, 3, 3, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If we write n as the product of its prime factors, n = p1^a1*p2^a2*p3^a3*...*pr^ar, then tau#(n) gives the number of divisors from 1 to max(p1^a1, p2^a2, p3^a3, ..., pr^ar). In general tau#(n) <= tau(n). Also, tau#(n) = tau(n) is A000961, tau#(n) < tau(n) is A024619. For any prime number p tau(p) = tau#(p) = 2. tau#(n) = 3 only for semiprimes (A001358). LINKS Paolo P. Lava, Table of n, a(n) for n = 1..1000 EXAMPLE For n=40, the divisors are (1, 2, 4, 5, 8, 10, 20, 40), so tau(40)=8. lcm(1, 2, 4, 5, 8) = 40, but lcm(1, 2, 4, 5) = 20 < 40, so tau#(40)=5. MAPLE with(numtheory); A222084:=proc(q) local a, b, c, j, n; print(1); for n from 2 to q do a:=ifactors(n)[2]; b:=nops(a); c:=0;   for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;   a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));   for j from 1 to b do if a[j]=c then break; fi; od; print(j); od; end: A222084(100000); MATHEMATICA Table[Count[ Divisors[n] , q_Integer /; q <= Max[Power @@@ FactorInteger[n]]], {n, 87}] (* Wouter Meeussen, Feb 09 2013 *) PROG (PARI) a(n) = {my(d = divisors(n), k = 1); while (lcm(vector(k, j, d[j])) != n, k++); k; } \\ Michel Marcus, Mar 13 2018 CROSSREFS Cf. A000005, A000961, A001358, A003418, A005179, A024619, A034444, A077610, A222085. Sequence in context: A175193 A073093 A326196 * A327394 A088873 A085082 Adjacent sequences:  A222081 A222082 A222083 * A222085 A222086 A222087 KEYWORD nonn AUTHOR Paolo P. Lava, Feb 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 06:22 EDT 2021. Contains 346435 sequences. (Running on oeis4.)