login
A327394
Number of stable divisors of n.
3
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 4, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 5, 2, 6, 4, 3, 4, 5, 2, 3, 3, 5, 2, 4, 2, 4, 6, 3, 2, 6, 3, 4, 4, 4, 2, 5, 4, 5, 3, 3, 2, 6, 2, 3, 4, 7, 3, 5, 2, 4, 4, 5, 2, 6, 2, 3, 6, 4, 4, 4, 2, 6, 5, 3, 2, 5, 4, 3, 3, 5, 2, 7, 4, 4, 4, 3, 4, 7, 2, 4, 6, 5, 2, 5, 2, 5, 6, 3, 2, 6, 2, 5, 3, 6, 2, 4, 3, 4, 4, 3, 4, 7, 3
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number is stable if its distinct prime indices are pairwise indivisible. Stable numbers are listed in A316476. Maximum stable divisor is A327393.
FORMULA
a(n) = Sum_{d|n} A378442(d). - Antti Karttunen, Nov 27 2024
EXAMPLE
The stable divisors of 60 are {1, 2, 3, 4, 5, 15}, so a(60) = 6.
MATHEMATICA
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
Table[Length[Select[Divisors[n], stableQ[PrimePi/@First/@FactorInteger[#], Divisible]&]], {n, 100}]
PROG
(PARI)
A378442(n)={my(v=apply(primepi, factor(n)[, 1])); for(j=2, #v, for(i=1, j-1, if(v[j]%v[i]==0, return(0)))); 1}; \\ From the function "ok" in A316476 by Andrew Howroyd, Aug 26 2018
A327394(n) = sumdiv(n, d, A378442(d)); \\ Antti Karttunen, Nov 27 2024
CROSSREFS
See link for additional cross-references.
Inverse Möbius transform of A378442.
Sequence in context: A073093 A326196 A222084 * A088873 A085082 A335516
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 15 2019
EXTENSIONS
More terms from Antti Karttunen, Nov 27 2024
STATUS
approved