login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A073093
Number of prime power divisors of n.
43
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 5, 2, 3, 3, 5, 2, 4, 2, 4, 4, 3, 2, 6, 3, 4, 3, 4, 2, 5, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 4, 3, 4, 2, 6, 5, 3, 2, 5, 3, 3, 3, 5, 2, 5, 3, 4, 3, 3, 3, 7, 2, 4, 4, 5, 2, 4, 2, 5, 4
OFFSET
1,2
COMMENTS
Also, number of prime divisors of 2n (counted with multiplicity).
A001221(n) < a(n) <= A000005(n) for all n; a(n)=A001221(n)+1 iff n is squarefree (A005117); a(n)=A000005(n) iff n is a prime power (A000961).
a(n) is also the number of k<n such that the resultant of the k-th cyclotomic polynomial and the n-th cyclotomic polynomial is not 1. It is well known that if (k,n)=1, res(polcyclo(n),polcyclo(k))=1. - Benoit Cloitre, Oct 13 2002
a(n) is also 1 + the number of divisors of n with omega(d)=1, where omega is A001221. - Enrique Pérez Herrero, Nov 05 2009
Length of n-th row of triangle A210208. - Reinhard Zumkeller, Mar 18 2012
a(n) depends only on the prime signature of n with a(A025487(n)) = 1, 2, 3, 3, 4, 4, 5, 5, 4, 6, 5, 6, 5, 7, 6, 7 ,.. = A036041(n)+1; (n>=1). - R. J. Mathar, May 28 2017
LINKS
T. M. Apostol, Resultants of Cyclotomic Polynomials, Proc. Amer. Math. Soc. 24, 457-462, 1970.
T. M. Apostol, The Resultant of the Cyclotomic Polynomials Fm(ax) and Fn(bx), Math. Comput. 29, 1-6, 1975.
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
FORMULA
If n = Product (p_j^k_j), a(n) = 1 + Sum (k_j).
a(n) = bigomega(n)+1 = A001222(n)+1 = A001222(2*n).
a(n) = if n=1 then 1 else a(A032742(n)) + 1. - Reinhard Zumkeller, Sep 24 2009
a(n) = max { a(d) ; d<n and d|n } + 1, if n > 1. - David W. Wilson, Dec 08 2010
a(n) = Sum_{k = 1 .. A001221(n)} A010055(A027750(n,k)). - Reinhard Zumkeller, Mar 18 2012
G.f.: x/(1 - x) + Sum_{k>=2} floor(1/omega(k))*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017
MAPLE
seq(numtheory:-bigomega(n)+1, n=1..1000); # Robert Israel, Sep 06 2015
MATHEMATICA
f[n_] := Plus @@ Flatten[ Table[1, {#[[2]]}] & /@ FactorInteger[n]]; Table[ f[2n], {n, 105}] (* Robert G. Wilson v, Dec 23 2004 *)
A001221[n_] := (Length[ FactorInteger[n]]); SetAttributes[A001221, Listable]; A073093[n_]:=Length[Select[A001221[Divisors[n]], # == 1 &]]; (* Enrique Pérez Herrero, Nov 05 2009 *)
PrimeOmega[Range[100]] + 1 (* Paolo Xausa, Nov 23 2024 *)
PROG
(PARI) a(n)=sum(k=1, n, if(1-polresultant(polcyclo(n), polcyclo(k)), 1, 0))
(PARI) A073093(n)=bigomega(n)+1 \\ M. F. Hasler, Dec 08 2010
(MuPAD) numlib::Omega (2*n)$ n=1..105 // Zerinvary Lajos, May 13 2008
(Haskell)
a073093 = length . a210208_row -- Reinhard Zumkeller, Mar 18 2012
(Magma) [n eq 1 select 1 else &+[p[2]: p in Factorization(n)]+1: n in [1..100]]; // Vincenzo Librandi, Jan 06 2017
CROSSREFS
Cf. A000961, A023888, A054372. Bisection of A001222.
Sequence in context: A299990 A175193 A353861 * A326196 A222084 A327394
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 24 2002
STATUS
approved