|
|
A054372
|
|
Table of resultants for cyclotomic polynomials phi_k(x) and phi_n(x).
|
|
4
|
|
|
0, 2, 0, 3, 1, 0, 2, 2, 1, 0, 5, 1, 1, 1, 0, 1, 3, 4, 1, 1, 0, 7, 1, 1, 1, 1, 1, 0, 2, 2, 1, 4, 1, 1, 1, 0, 3, 1, 9, 1, 1, 1, 1, 1, 0, 1, 5, 1, 1, 16, 1, 1, 1, 1, 0, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 4, 9, 1, 4, 1, 1, 1, 1, 1, 0, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 7, 1, 1, 1, 1, 64, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
T. D. Noe, Rows n=1..100 of triangle, flattened
T. M. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc. 24 (1970), 457-462.
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial.
|
|
EXAMPLE
|
Triangle begins:
0;
2, 0;
3, 1, 0;
2, 2, 1, 0;
5, 1, 1, 1, 0;
1, 3, 4, 1, 1, 0;
7, 1, 1, 1, 1, 1, 0;
2, 2, 1, 4, 1, 1, 1, 0;
...
|
|
MATHEMATICA
|
Flatten[Table[Resultant[Cyclotomic[n, x], Cyclotomic[k, x], x], {k, 20}, {n, k}]]
|
|
PROG
|
(PARI) T(n, k) = polresultant(polcyclo(k), polcyclo(n));
row(n) = vector(n, k, T(n, k)); \\ Michel Marcus, Aug 18 2021
|
|
CROSSREFS
|
Sequence in context: A238762 A269517 A190440 * A070679 A177443 A176919
Adjacent sequences: A054369 A054370 A054371 * A054373 A054374 A054375
|
|
KEYWORD
|
nonn,easy,nice,tabl
|
|
AUTHOR
|
Eric W. Weisstein
|
|
STATUS
|
approved
|
|
|
|