OFFSET
0,4
COMMENTS
Also, the number of noncrossing partitions up to rotation composed of n blocks of size 7.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
Miklos Bona, Michel Bousquet, Gilbert Labelle, and Pierre Leroux, Enumeration of m-ary cacti, Advances in Applied Mathematics, 24 (2000), 22-56.
FORMULA
a(n) = ((Sum_{d|n} phi(n/d)*binomial(7*d, d)) + (Sum_{d|gcd(n-1, 7)} phi(d)*binomial(7*n/d, (n-1)/d)))/(7*n) - binomial(7*n, n)/(6*n+1) for n > 0. - Andrew Howroyd, May 04 2018
MAPLE
with(combinat): with(numtheory): m := 7: for p from 2 to 27 do s1 := 0: s2 := 0: for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d, d) fi: od: for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od: printf(`%d, `, (s1+s2)/(m*p)-binomial(m*p, p)/(p*(m-1)+1)) od: # Zerinvary Lajos, Dec 01 2006
MATHEMATICA
a[0] = 1;
a[n_] := (DivisorSum[n, EulerPhi[n/#] Binomial[7#, #]&] + DivisorSum[GCD[n - 1, 7], EulerPhi[#] Binomial[7n/#, (n-1)/#]&])/(7n) - Binomial[7n, n]/(6 n + 1);
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
PROG
(PARI) a(n) = {if(n==0, 1, (sumdiv(n, d, eulerphi(n/d)*binomial(7*d, d)) + sumdiv(gcd(n-1, 7), d, eulerphi(d)*binomial(7*n/d, (n-1)/d)))/(7*n) - binomial(7*n, n)/(6*n+1))} \\ Andrew Howroyd, May 04 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Zerinvary Lajos, Dec 01 2006
Terms a(20) and beyond from Andrew Howroyd, May 04 2018
STATUS
approved