|
|
A237872
|
|
Numerator of Sum_{i=1..n} n^i/i.
|
|
2
|
|
|
1, 4, 33, 292, 10085, 48756, 2827293, 257063528, 13779684369, 70889442280, 72634140523901, 314690934778068, 140915129117772841, 5533416685634616884, 251767541303505518145, 55644156684309383260624, 7481965178603932789388755
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The sequence gives the numerators of -n^(n+1)*Phi(n,1,n+1)-log(-n+1) for n>1, where Phi is the Lerch transcendent.
|
|
LINKS
|
Bruno Berselli, Table of n, a(n) for n = 1..100
|
|
MAPLE
|
A237872:=n->numer(add(n^i/i, i=1..n)): seq(A237872(n), n=1..20); # Wesley Ivan Hurt, Apr 26 2017
|
|
MATHEMATICA
|
f[n_] := Sum[n^i/i, {i, 1, n}]; Table[Numerator[f[n]], {n, 1, 20}]
|
|
PROG
|
(Magma) terms:=20; s:=[&+[n^i/i: i in [1..n]]: n in [1..terms]]; [Numerator(s[n]): n in [1..terms]];
|
|
CROSSREFS
|
Cf. A236772, A237873 (denominators).
Sequence in context: A246806 A202765 A264830 * A123780 A054371 A028576
Adjacent sequences: A237869 A237870 A237871 * A237873 A237874 A237875
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Bruno Berselli, Feb 14 2014
|
|
STATUS
|
approved
|
|
|
|