login
A246806
Number of n-digit numbers whose base-10 representations can be written as the concatenations of 0 or more prime numbers (also expressed in base 10).
2
1, 4, 33, 285, 2643, 24920, 239543, 2327458, 22801065, 224608236, 2222034266, 22053438268
OFFSET
0,2
COMMENTS
Here we assume all representations involved are "canonical", that is, have no leading zeros. 1 is not a prime, and neither is 0.
EXAMPLE
For n = 2 the 33 numbers counted include the 21 primes between 10 and 99, and also the 12 numbers {22,25,27,32,33,35,52,55,57,72,75,77}.
MAPLE
P[1]:= {2, 3, 5, 7}: C[1]:= P[1]:
for n from 2 to 7 do
P[n]:= select(isprime, {seq(2*i+1, i=10^(n-1)/2 .. 5*10^(n-1)-1)});
C[n]:= `union`(P[n], seq({seq(seq(c*10^j+p, p=P[j]), c=C[n-j])}, j=1..n-1));
od:
1, seq(nops(C[n]), n=1..7); # Robert Israel, Dec 07 2014
PROG
(Python)
from sympy import isprime, primerange
from functools import lru_cache
@lru_cache(maxsize=None)
def ok(n):
if n%10 not in {1, 2, 3, 5, 7, 9}: return False
if isprime(n): return True
d = str(n)
for i in range(1, len(d)):
if d[i] != '0' and isprime(int(d[:i])) and ok(int(d[i:])): return True
return False
def a(n): return 1 if n == 0 else sum(ok(m) for m in range(10**(n-1), 10**n))
print([a(n) for n in range(7)]) # Michael S. Branicky, Mar 26 2021
CROSSREFS
Sequence in context: A041024 A088317 A257068 * A202765 A264830 A237872
KEYWORD
nonn,base,hard,more
AUTHOR
Jeffrey Shallit, Nov 16 2014
EXTENSIONS
a(9) from Jeffrey Shallit, Dec 07 2014
a(10)-a(11) from Lars Blomberg, Feb 09 2019
STATUS
approved