login
A190440
[(bn+c)r]-b[nr]-[cr], where (r,b,c)=(golden ratio,4,0) and []=floor.
7
2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 3, 1, 0, 2, 1, 3, 2, 0, 2, 1, 3, 2, 0
OFFSET
1,1
COMMENTS
Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
Examples:
(golden ratio,2,0): A078588, A005653, A005652
(golden ratio,2,1): A190427-A190430
(golden ratio,3,0): A140397-A190400
(golden ratio,3,1): A140431-A190435
(golden ratio,3,2): A140436-A190439
FORMULA
a(n)=[4nr]-4[nr], where r=golden ratio.
MATHEMATICA
r = GoldenRatio;
f[n_] := Floor[4*n*r] - 4*Floor[n*r];
t = Table[f[n], {n, 1, 320}] (* A190440 *)
Flatten[Position[t, 0]] (* A190240 *)
Flatten[Position[t, 1]] (* A190249 *)
Flatten[Position[t, 2]] (* A190442 *)
Flatten[Position[t, 3]] (* A190443 *)
Flatten[Position[t, 4]] (* A190248 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 10 2011
STATUS
approved