login
A269517
Lexicographically least sequence of nonnegative integers that avoids a/b-powers for all a/b >= 3/2.
1
0, 1, 2, 0, 3, 1, 0, 2, 1, 3, 0, 1, 2, 0, 4, 1, 0, 2, 1, 4, 0, 1, 2, 0, 3, 1, 0, 2, 1, 5, 0, 1, 2, 0, 4, 1, 0, 2, 1, 3, 0, 1, 2, 0, 3, 1, 0, 2, 1, 4, 0, 1, 2, 0, 4, 1, 0, 2, 1, 5, 0, 1, 2, 0, 3, 1, 0, 2, 1, 3, 0, 1, 2, 0, 4, 1, 0, 2, 1, 4, 0, 1, 2, 0, 3, 1, 0, 2, 1, 6, 0, 1, 2, 0, 4, 1, 0, 2, 1, 3, 0, 1, 2, 0, 3, 1, 0, 2, 1
OFFSET
0,3
COMMENTS
Rowland and Shallit showed that this sequence is 6-regular.
LINKS
Eric Rowland and Jeffrey Shallit, Avoiding 3/2-powers over the natural numbers, arXiv:1101.3535 [math.CO] (2011).
Eric Rowland and Jeffrey Shallit, Avoiding 3/2-powers over the natural numbers, Discrete Mathematics 312 (2012) 1282-1288.
Lara Pudwell and Eric Rowland, Avoiding fractional powers over the natural numbers, arXiv:1510.02807 [math.CO] (2015).
FORMULA
a(5 n + 4) = A269518(n) + 3. - Eric Rowland, Oct 01 2016
CROSSREFS
Cf. A269518 (the lexicographically least sequence that avoids 3/2-powers).
Sequence in context: A143143 A158853 A238762 * A190440 A054372 A070679
KEYWORD
nonn
AUTHOR
Eric Rowland, Feb 28 2016
STATUS
approved