|
|
A269518
|
|
Lexicographically least sequence of nonnegative integers that avoids 3/2-powers.
|
|
2
|
|
|
0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 0, 3, 1, 0, 0, 1, 1, 3, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 1, 4, 0, 0, 1, 1, 0, 3, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 1, 3, 0, 0, 1, 1, 0, 3, 1, 0, 0, 1, 1, 4, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 0, 3, 1, 0, 0, 1, 1, 3, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 1, 5, 0, 0, 1, 1, 0, 3, 1, 0, 0, 1, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
Rowland and Shallit showed that this sequence is 6-regular.
|
|
LINKS
|
Eric Rowland, Table of n, a(n) for n = 0..20000
Lara Pudwell and Eric Rowland, Avoiding fractional powers over the natural numbers, arXiv:1510.02807 [math.CO] (2015). Also Electronic Journal of Combinatorics, Volume 25(2) (2018), #P2.27
Eric Rowland and Jeffrey Shallit, Avoiding 3/2-powers over the natural numbers, arXiv:1101.3535 [math.CO] (2011).
Eric Rowland and Jeffrey Shallit, Avoiding 3/2-powers over the natural numbers, Discrete Mathematics 312 (2012) 1282-1288.
|
|
FORMULA
|
a(6 n + 5) = a(n) + 2. - Eric Rowland, Oct 01 2016
|
|
MATHEMATICA
|
(* This gives the first 7776 terms. *)
Replace[SubstitutionSystem[{n_Integer :> {one, 0, zero, 1, one, n + 2}, zero -> {zero, 0, one, 1, zero, 2}, one -> {zero, 0, one, 1, zero, 3}}, {zero}, {{5}}], {zero -> 0, one -> 1}, {1}] (* Eric Rowland, Oct 01 2016 *)
|
|
CROSSREFS
|
Cf. A269517 (the lexicographically least sequence that avoids a/b-powers for all a/b >= 3/2).
Sequence in context: A143379 A254605 A335664 * A219840 A343220 A264893
Adjacent sequences: A269515 A269516 A269517 * A269519 A269520 A269521
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Eric Rowland, Feb 28 2016
|
|
STATUS
|
approved
|
|
|
|