login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143379
Expansion of q^(-7/24) * eta(q) * eta(q^4)^2 / eta(q^2) in powers of q.
7
1, -1, 0, -1, -1, 1, 1, 1, -1, 1, 0, 1, 0, 0, -2, -1, 0, 0, -1, 1, 1, -2, 0, 0, 0, 1, 1, 0, 2, 0, 1, -1, -1, 0, 1, -1, 0, 0, 1, 0, -1, -1, 0, -1, -1, -1, 0, 0, 0, 1, 0, 1, 0, 1, -1, -1, 2, 0, -1, 1, -1, 1, 0, 3, 1, -1, 0, 0, 0, 1, -2, 0, 0, -1, -1, 0, -1, 0, 1, 0, 0, 1, -1, -1, -1, 0, 0, 0, 0, -1, 0, -2, 0, 1, 2, 1, -1, 0, 2, 1, 0, 0, 0, 0, 1
OFFSET
0,15
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of psi(x^2) * f(-x) = psi(-x) * f(-x^4) = chi(-x) * f(-x^4)^2 = psi(-x)^2 / chi(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Apr 07 2015
Euler transform of period 4 sequence [ -1, 0, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 72^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A143377.
G.f.: Product_{k>0} (1 - x^(4*k))^2 * (1 - x^(2*k-1)).
Convolution of A000009 and A134343. - Michael Somos, Jul 11 2012
-2 * a(n) = A143377(4*n + 1). 2 * a(n) = A143380(4*n + 1).
a(2*n) = A214302(n). a(2*n + 1) = - A214303(n). - Michael Somos, Jul 11 2012
EXAMPLE
G.f. = 1 - x - x^3 - x^4 + x^5 + x^6 + x^7 - x^8 + x^9 + x^11 - 2*x^14 - x^15 - x^18 + ...
G.f. = q^7 - q^31 - q^79 - q^103 + q^127 + q^151 + q^175 - q^199 + q^223 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^4]^2 / QPochhammer[ x^2], {x, 0, n}]; (* Michael Somos, Jul 11 2012 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ x^4]^2, {x, 0, n}]; (* Michael Somos, Apr 07 2015 *)
PROG
(PARI) {a(n) = my(A, p, e, x); if( n<0, 0, n = n*4 + 1; A = factor(6*n + 1); simplify( I^n / -2 * prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, 0, p%8==5 || p%24==23, !(e%2), p%8==3 || p%24==17, (-1)^(e\2)*!(e%2), for(i=1, sqrtint(p\6), if( issquare(p - 6*i^2, &x), break)); (e+1) * (kronecker(12, x) * I^((p-1) / 6))^e))))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 11 2008
STATUS
approved