Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 12 2021 22:24:45
%S 1,-1,0,-1,-1,1,1,1,-1,1,0,1,0,0,-2,-1,0,0,-1,1,1,-2,0,0,0,1,1,0,2,0,
%T 1,-1,-1,0,1,-1,0,0,1,0,-1,-1,0,-1,-1,-1,0,0,0,1,0,1,0,1,-1,-1,2,0,-1,
%U 1,-1,1,0,3,1,-1,0,0,0,1,-2,0,0,-1,-1,0,-1,0,1,0,0,1,-1,-1,-1,0,0,0,0,-1,0,-2,0,1,2,1,-1,0,2,1,0,0,0,0,1
%N Expansion of q^(-7/24) * eta(q) * eta(q^4)^2 / eta(q^2) in powers of q.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A143379/b143379.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of psi(x^2) * f(-x) = psi(-x) * f(-x^4) = chi(-x) * f(-x^4)^2 = psi(-x)^2 / chi(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - _Michael Somos_, Apr 07 2015
%F Euler transform of period 4 sequence [ -1, 0, -1, -2, ...].
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 72^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A143377.
%F G.f.: Product_{k>0} (1 - x^(4*k))^2 * (1 - x^(2*k-1)).
%F Convolution of A000009 and A134343. - _Michael Somos_, Jul 11 2012
%F -2 * a(n) = A143377(4*n + 1). 2 * a(n) = A143380(4*n + 1).
%F a(2*n) = A214302(n). a(2*n + 1) = - A214303(n). - _Michael Somos_, Jul 11 2012
%e G.f. = 1 - x - x^3 - x^4 + x^5 + x^6 + x^7 - x^8 + x^9 + x^11 - 2*x^14 - x^15 - x^18 + ...
%e G.f. = q^7 - q^31 - q^79 - q^103 + q^127 + q^151 + q^175 - q^199 + q^223 + ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^4]^2 / QPochhammer[ x^2], {x, 0, n}]; (* _Michael Somos_, Jul 11 2012 *)
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ x^4]^2, {x, 0, n}]; (* _Michael Somos_, Apr 07 2015 *)
%o (PARI) {a(n) = my(A, p, e, x); if( n<0, 0, n = n*4 + 1; A = factor(6*n + 1); simplify( I^n / -2 * prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%8==5 || p%24==23, !(e%2), p%8==3 || p%24==17, (-1)^(e\2)*!(e%2), for(i=1, sqrtint(p\6), if( issquare(p - 6*i^2, &x), break)); (e+1) * (kronecker(12, x) * I^((p-1) / 6))^e))))};
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A), n))};
%Y Cf. A000009, A134343, A143377, A143380.
%K sign
%O 0,15
%A _Michael Somos_, Aug 11 2008