%I #20 Nov 08 2016 20:03:30
%S 0,1,2,0,3,1,0,2,1,3,0,1,2,0,4,1,0,2,1,4,0,1,2,0,3,1,0,2,1,5,0,1,2,0,
%T 4,1,0,2,1,3,0,1,2,0,3,1,0,2,1,4,0,1,2,0,4,1,0,2,1,5,0,1,2,0,3,1,0,2,
%U 1,3,0,1,2,0,4,1,0,2,1,4,0,1,2,0,3,1,0,2,1,6,0,1,2,0,4,1,0,2,1,3,0,1,2,0,3,1,0,2,1
%N Lexicographically least sequence of nonnegative integers that avoids a/b-powers for all a/b >= 3/2.
%C Rowland and Shallit showed that this sequence is 6-regular.
%H Eric Rowland and Jeffrey Shallit, <a href="http://arxiv.org/abs/1101.3535">Avoiding 3/2-powers over the natural numbers</a>, arXiv:1101.3535 [math.CO] (2011).
%H Eric Rowland and Jeffrey Shallit, <a href="http://dx.doi.org/10.1016/j.disc.2011.12.019">Avoiding 3/2-powers over the natural numbers</a>, Discrete Mathematics 312 (2012) 1282-1288.
%H Lara Pudwell and Eric Rowland, <a href="http://arxiv.org/abs/1510.02807">Avoiding fractional powers over the natural numbers</a>, arXiv:1510.02807 [math.CO] (2015).
%F a(5 n + 4) = A269518(n) + 3. - _Eric Rowland_, Oct 01 2016
%Y Cf. A269518 (the lexicographically least sequence that avoids 3/2-powers).
%K nonn
%O 0,3
%A _Eric Rowland_, Feb 28 2016