login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190441
a(n) = 4*a(n-1) + 39*a(n-2), with a(0)=0, a(1)=1.
2
0, 1, 4, 55, 376, 3649, 29260, 259351, 2178544, 18828865, 160278676, 1375440439, 11752630120, 100652697601, 860963365084, 7369308666775, 63054805905376, 539622261625729, 4617626476812580, 39515774110653751, 338150529038305624, 2893717306468718785
OFFSET
0,3
FORMULA
G.f.: x/(1-4*x-39*x^2).
a(n) = ((2+sqrt(43))^n - (2-sqrt(43))^n)/(2*sqrt(43)).
MATHEMATICA
a = {0, 1}; Do[AppendTo[a, 4 a[[-1]] + 39 a[[-2]]], {20}]; a (* Bruno Berselli, Dec 26 2012 *)
CoefficientList[Series[x / (1 - 4 x - 39 x^2), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 19 2013 *)
LinearRecurrence[{4, 39}, {0, 1}, 30] (* Harvey P. Dale, Aug 21 2021 *)
PROG
(Maxima) a[0]:0$ a[1]:1$ a[n]:=4*a[n-1]+39*a[n-2]$ makelist(a[n], n, 0, 17);
(Magma) [n le 2 select n-1 else 4*Self(n-1)+39*Self(n-2): n in [1..22]];
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-4*x-39*x^2))) \\ G. C. Greubel, Dec 30 2017
CROSSREFS
Cf. A015611, A190943 (with similar closed forms).
Sequence in context: A064439 A352510 A133218 * A151576 A204107 A285366
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, May 25 2011
STATUS
approved