OFFSET
1,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 34, -34, -1, 1).
FORMULA
For n>5, a(n) = 34*a(n-2) - a(n-4) + 16.
For n>6, a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
For n>1, a(n) = 1/8 * ((4 + sqrt(2)*(-1)^n)*(1+sqrt(2))^(2*n - 3) + (4 - sqrt(2)*(-1)^n)*(1-sqrt(2))^(2*n-3) - 4).
a(n) = floor(1/8 * (4 + sqrt(2)*(-1)^n)* (1+sqrt(2))^(2*n-3)).
G.f.: x^2*(2*x^4+3*x^3-17*x^2-3*x-1)/((x-1)*(x^2+6*x+1)*(x^2-6*x+1)).
lim (n -> Infinity, a(2n+1)/a(2n)) = 1/7*(43 + 30*sqrt(2)).
lim (n -> Infinity, a(2n)/a(2n-1)) = 1/7*(11 + 6*sqrt(2)).
EXAMPLE
MATHEMATICA
LinearRecurrence[{1, 34, -34, -1, 1 }, {0, 1, 4, 55, 154, 1885}, 24 ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Richard Choulet, Oct 11 2007; Ant King, Nov 04 2011
EXTENSIONS
Entry revised by Max Alekseyev, Nov 06 2011
STATUS
approved