|
|
A133215
|
|
Hexagonal numbers (A000384) which are sum of 2 other hexagonal numbers > 0.
|
|
2
|
|
|
276, 703, 861, 1225, 2850, 3003, 4560, 5151, 8128, 10878, 11781, 12090, 12720, 13366, 14706, 15400, 16110, 18721, 21115, 22366, 24090, 24531, 26796, 29161, 29646, 31125, 32131, 33153, 36315, 38503, 39621, 40186, 42486, 45451, 47895
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This is to A136117 as A000384 is to A000326. Duke and Schulze-Pillot (1990) proved that every sufficiently large integer (and hence every sufficiently large hexagonal number) can be written as the sum of three hexagonal numbers.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
hex(19) = 703 = 378 + 325 = hex(14) + hex(13).
hex(21) = 861 = 630 + 231 = hex(18) + hex(11).
hex(25) = 1225 = 1035 + 190 = hex(23) + hex(10).
hex(38) = 2850 = 2415 + 435 = hex(35) + hex(15).
hex(39) = 3003 = 2850 + 153 = hex(38) + hex(9) = 2415 + 435 + 153 = hex(35) + hex(15) + hex(9).
hex(48) = 4560 = 2415 + 2145 = hex(35) + hex(33).
|
|
MATHEMATICA
|
With[{upto=60000}, Select[Union[Total/@Subsets[Table[n(2n-1), {n, Ceiling[ (1+Sqrt[1+8upto])/4]}], {2}]], IntegerQ[(1+Sqrt[1+8#])/4]&&#<=upto&]] (* Harvey P. Dale, Jul 24 2011 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|