login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133212
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3; a(0) = 1, a(1) = 4, a(2) = 12, a(3) = 32.
2
1, 4, 12, 32, 72, 144, 272, 512, 992, 1984, 4032, 8192, 16512, 33024, 65792, 131072, 261632, 523264, 1047552, 2097152, 4196352, 8392704, 16781312, 33554432, 67100672, 134201344, 268419072, 536870912, 1073774592, 2147549184
OFFSET
0,2
COMMENTS
Conjecture: a(n) = 2*A038503(n+3) if n > 0. - R. J. Mathar, Oct 23 2007
FORMULA
Sequence is identical to its fourth differences.
From R. J. Mathar, Nov 18 2007: (Start)
G.f.: -(1 + 2*x^2 + 4*x^3)/((2*x - 1)*(2*x^2 - 2*x + 1)). - [Corrected by Georg Fischer, May 12 2019]
a(n) = -2*(-1)^n*A009116(n)+3*2^n. (End)
E.g.f.: exp(x)*(3*cosh(x) - 2*(cos(x) + sin(x)) + 5*sinh(x)). - Stefano Spezia, Jan 03 2023
MAPLE
A133212 := proc(n) option remember ; if n <= 3 then op(n+1, [1, 4, 12, 32]) ; else 4*A133212(n-1)-6*A133212(n-2)+4*A133212(n-3) ; fi ; end: seq(A133212(n), n=0..50) ; # R. J. Mathar, Oct 23 2007
MATHEMATICA
Join[{1}, LinearRecurrence[{4, -6, 4}, {4, 12, 32}, 29]] (* Ray Chandler, Sep 23 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 11 2007
EXTENSIONS
More terms from R. J. Mathar, Oct 23 2007
STATUS
approved