|
|
A133212
|
|
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3; a(0) = 1, a(1) = 4, a(2) = 12, a(3) = 32.
|
|
2
|
|
|
1, 4, 12, 32, 72, 144, 272, 512, 992, 1984, 4032, 8192, 16512, 33024, 65792, 131072, 261632, 523264, 1047552, 2097152, 4196352, 8392704, 16781312, 33554432, 67100672, 134201344, 268419072, 536870912, 1073774592, 2147549184
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Sequence is identical to its fourth differences.
G.f.: -(1 + 2*x^2 + 4*x^3)/((2*x - 1)*(2*x^2 - 2*x + 1)). - [Corrected by Georg Fischer, May 12 2019]
a(n) = -2*(-1)^n*A009116(n)+3*2^n. (End)
E.g.f.: exp(x)*(3*cosh(x) - 2*(cos(x) + sin(x)) + 5*sinh(x)). - Stefano Spezia, Jan 03 2023
|
|
MAPLE
|
|
|
MATHEMATICA
|
Join[{1}, LinearRecurrence[{4, -6, 4}, {4, 12, 32}, 29]] (* Ray Chandler, Sep 23 2015 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|