login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348864
a(n) is the number of multiplications required to compute the permanent of general n X n matrices using trellis method with normalization.
0
0, 4, 12, 32, 70, 162, 350, 800, 1746, 3950, 8602, 19164, 41392, 90846, 194490, 421568, 895594, 1922022, 4057298, 8638580, 18140640, 38378054, 80244562, 168877272, 351827100, 737208082, 1531123830, 3196464740, 6621247636, 13779365430, 28477354354, 59102191488, 121898268954
OFFSET
1,2
LINKS
Han Mao Kiah, Alexander Vardy and Hanwen Yao, Computing Permanents on a Trellis, arXiv:2107.07377 [cs.IT], 2021.
FORMULA
a(n) = n*2^(n-1) - ceiling(n/2)*binomial(n, floor(n/2)) + n^2 - n (see Theorem 6, p. 11 in Kiah et al.).
a(n) = A001787(n) - A100071(n) + A002378(n-1).
O.g.f.: x*(1/(1 - 2*x)^2 + 2*x/(1 - x)^3 - 1/((1 - 2*x)*sqrt(1 - 4*x^2))).
E.g.f.: exp(x)*x*(exp(x) + x) - (1 + x)*BesselI(1, 2*x) - x*BesselI(2, 2*x).
D-finite with recurrence (n-1)*(n-2)*(n-4)*(3*n-23)*a(n) -3*(n -2)*(3*n^3-34*n^2+91*n-20)*a(n-1) -2*(n-1)*(n-3)*(3*n^2 -47*n+164)*a(n-2) +12*(3*n-22)*(n-1)*(n-2)*(n-4)*a(n-3) -8*(3*n-20)*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Mar 06 2022
MATHEMATICA
a[n_]:=n 2^(n-1)-Ceiling[n/2]Binomial[n, Floor[n/2]]+n^2-n; Array[a, 33]
PROG
(PARI) a(n) = n*2^(n-1) - ceil(n/2)*binomial(n, floor(n/2)) + n^2 - n; \\ Michel Marcus, Nov 03 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Nov 02 2021
STATUS
approved