OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, -6, 4).
FORMULA
Sequence is identical to its fourth differences.
a(n) = 2^n + 2^[(n+3)/2]*cos((n+1)Pi/4); a(n)=2^n + (1+i)^(n+1) + (1-i)^(n+1), where i=sqrt(-1). - Emeric Deutsch, Oct 14 2007
G.f.: -(3-10*x+10*x^2)/(2*x-1)/(2*x^2-2*x+1). - R. J. Mathar, Nov 14 2007
MAPLE
a[0]:=3: a[1]:=2: a[2]:=0: a[3]:=0; for n from 4 to 27 do a[n]:=4*a[n-1]-6*a[n-2]+4*a[n-3] end do: seq(a[n], n=0..27); # Emeric Deutsch, Oct 14 2007
MATHEMATICA
a = {3, 2, 0, 0}; Do[AppendTo[a, 4*a[[ -1]] - 6*a[[ -2]] + 4*a[[ -3]]], {30}]; a (* Stefan Steinerberger, Oct 14 2007 *)
LinearRecurrence[{4, -6, 4}, {3, 2, 0}, 32] (* Ray Chandler, Sep 23 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 11 2007
EXTENSIONS
More terms from Stefan Steinerberger and Emeric Deutsch, Oct 14 2007
STATUS
approved